

Università degli Studi di Padova

Lecture 11

Convolution and Fourier series in MatLab

Tomaso Erseghe

11.1 Convolution in MatLab

An overview

Approximate convolution in continuous-time

Discrete-time convolution

For limited-time signals

$$x(n) \underbrace{g(n)}_{\text{LTI system/filter}} \underbrace{y(n)}_{k=-\infty} = \sum_{k=-\infty}^{\infty} x(k)g(n-k)$$

$$\lim_{\substack{k=-\infty \\ \text{Limited only if limited signals \\ e(x^*g) = [n_x+n_g, N_x+N_g]}$$

$$x(k) \underbrace{f(k)}_{n_x} \underbrace{f(k)}_{N_x} \underbrace{g(k)}_{n_g} \underbrace{f(k)}_{n_g} \underbrace{f($$

MatLab conv function

MatLab conv function

cut the result in case nonzero outside

MatLab conv function

'valid' = keeps an even smaller part

times $\mathbf{n}_y = \mathbf{n}_x + \mathbf{N}_g : \mathbf{N}_x + \mathbf{n}_g$

Continuous-time convolution

An approximation

Exercises

On the convolution in MatLab

Get acquainted with MatLab convolution operator **conv** and remind that when approximating a continuous-time convolution you will need to multiply by the sampling spacing T, to have **T*conv(x,g)**

Remember that the output of the convolution is not always valuable everywhere, e.g., in case signals are not zero outside the interval where samples are given

Master's degree ICT Internet Multimedia Engineering

UNIVERSITÀ **DEGLI STUDI** di Padova