Table of Contents I

- Tuning Model Predictive Control for LTI Systems
 - Most important python code for this sub-module
 - Self-assessment material

- 1

Tuning Model Predictive Control for LTI Systems

Contents map

developed content units	taxonomy levels
tuning MPC	u2, e2

prerequisite content units	taxonomy levels
MPC fundamentals	ul, el
LTI systems	u1, e1

- Tuning Model Predictive Control for LTI Systems 2

Main ILO of sub-module "Tuning Model Predictive Control for LTI Systems"

> Design and tune an MPC controller for LTI systems to meet specified performance criteria

The working principle, graphically signals measured past y wished future y potential u, and correspondations frandation for the set of the set

MPC in formulas (for LTI systems)

assumed dynamics: $x_{k+1} = Ax_k + Bu_k$

optimization problem:

em:

$$\begin{array}{l} \min_{u[0],\dots,u[N]} \sum_{k=0}^{N-1} \underbrace{x[k]^T Qx[k]}_{\text{state cost}} + \underbrace{u[k]^T Ru[k]}_{\text{control cost}} + \underbrace{x[N]^T Px[N]}_{\text{terminal cost}} \\
\text{s.t.} \quad x_{k+1} = Ax[k] + Bu[k] \quad \forall k \in \{0,\dots,N-1\} \\
u_{\min} \leq u[k] \leq u_{\max} \\
x_{\min} \leq x[k] \leq x_{\max} \\
x[0] = x(t) \quad \text{(initial condition)}
\end{array}$$

Key parameters

$$\min_{u[0],...,u[N]} \sum_{k=0}^{N-1} \underbrace{x[k]^T Q x[k]}_{\text{state cost}} + \underbrace{u[k]^T R u[k]}_{\text{control cost}} + \underbrace{x[N]^T P x[N]}_{\text{terminal cost}}$$

- prediction horizon N
- weight matrices Q, R, P
- the constraints parameters $u_{\min}, u_{\max}, x_{\min}, x_{\max}$

- Tuning Model Predictive Control for LTI Systems 6

- Tuning Model Predictive Control for LTI Systems 7

But which performance criteria shall we optimize?

Standard options:

- settling time
- overshoot
- control effort
- robustness
- computational efficiency

General trade-offs

$$\min_{u[0],...,u[N]} \sum_{k=0}^{N-1} \underbrace{x[k]^T Q x[k]}_{\text{state cost}} + \underbrace{u[k]^T R u[k]}_{\text{control cost}} + \underbrace{x[N]^T P x[N]}_{\text{terminal cost}}$$

- $\uparrow N \implies$ better performance but more computations
- $\uparrow Q \implies$ faster state convergence but more aggressive control
- $\uparrow R \implies$ smoother control but slower response

- Tuning Model Predictive Control for LTI Systems 8

Tuning methodology

$$\min_{u[0],...,u[N]} \sum_{k=0}^{N-1} \underbrace{x[k]^T Q x[k]}_{\text{state cost}} + \underbrace{u[k]^T R u[k]}_{\text{control cost}} + \underbrace{x[N]^T P x[N]}_{\text{terminal cost}}$$

at every iteration, evaluate the performance and iteratively refine the parameters

- start with the infinite horizon equivalent (i.e., LQR)
- move to a shorter prediction horizon (5-20 samples)
- then adjust the weights (Q first, then R)

Summarizing

Design and tune an MPC controller for LTI systems to meet specified performance criteria

 determining performance requirements require simulating and evaluating to iteratively refine parameters notes

notes

- You should now understand this systematic tuning approach
- Remember the fundamental trade-offs

- Tuning Model Predictive Control for LTI Systems 10

Most important python code for this sub-module

Model predictive control python toolbox

https://www.do-mpc.com/en/latest/

notes

• Show how to adjust parameters

Demonstrate effect of changing weights

- Tuning Model Predictive Control for LTI Systems 2

Self-assessment material

Question 1

What is the primary effect of increasing the Q matrix in MPC tuning?

Potential answers:	
I: (wrong) II: (wrong) III: (correct) IV: (wrong)	Reduced computational requirements Smoother control actions Faster state convergence Increased robustness to disturbances

Solution 1:

The Q matrix weights the state error, so increasing it prioritizes faster convergence to the desired state.

- Tuning Model Predictive Control for LTI Systems 2

• see the associated solution(s), if compiled with that ones :)

Question 2

What is the fundamental purpose of the terminal cost (P) in MPC?

Potential answers:	
I: (wrong)	To reduce the computational complexity of the optimization
II: (correct)	To ensure stability by approximating infinite horizon behavior
III: (wrong)	To enforce hard constraints on the system states
IV: (wrong)	To prioritize certain states over others in the transient response
V: (wrong)	l do not know

Solution 1:

The terminal cost ${\sf P}$ is typically chosen as the solution to the algebraic Riccati equation to guarantee stability, effectively approximating the infinite horizon costto-go beyond the prediction horizon N. - Tuning Model Predictive Control for LTI Systems 3

notes

Question 3

Why might increasing the prediction horizon N improve controller performance?

Potential answers:

I: (wrong)	It allows using larger Q matrices in the cost function
ll: (correct)	The controller can account for longer-term system behavior
III: (wrong)	It reduces the need for state constraints
IV: (wrong)	It makes the optimization problem convex
V: (wrong)	I do not know

Solution 1:

A longer prediction horizon enables the controller to "see further ahead" and make better decisions by considering more future states, though this comes at increased computational cost. - Tuning Model Predictive Control for LTI Systems 4

Question 4

What is the primary consequence of setting R = 0 in the MPC cost function?

Potential answers:	
I: (wrong)	The controller will become unstable
II: (wrong)	The state constraints will be ignored
III: (correct)	The controller may use arbitrarily large control inputs
IV: (wrong)	The prediction horizon becomes irrelevant
V: (wrong)	I do not know

Solution 1:

The R matrix penalizes control effort. With R=0, the optimizer has no incentive to limit control inputs, potentially leading to aggressive (and possibly impractical) control actions. - Tuning Model Predictive Control for LTI Systems 5

notes

Question 5

Which of these represents a fundamental trade-off in MPC tuning?

Potential answers:

I:	(wrong)	Between continuous-time and discrete-time formulations
11:	(wrong)	Between state estimation and control computation
III:	(correct)	Between performance and computational complexity
IV:	(wrong)	Between linear and nonlinear system models
V:	(wrong)	l do not know

Solution 1:

MPC involves balancing control performance (better with longer horizons, more constraints) against computational tractability (worse with these same factors), which is a fundamental design consideration. - Tuning Model Predictive Control for LTI Systems 6

Question 6

What is the main advantage of MPC compared to LQR control?

Potential answers: I: (wrong) MPC always requires less computational power

••	(····· e unuje require rece computational ponei
11:	(wrong)	MPC guarantees global optimality for nonlinear systems
11:	(correct)	MPC can explicitly handle state and input constraints
V:	(wrong)	MPC doesn't require a system model
V:	(wrong)	l do not know

Solution 1:

While both are optimal controllers, MPC's key advantage is its ability to explicitly incorporate and satisfy constraints during the optimization process, which LQR cannot do natively.

Recap of sub-module "Tuning MPC for LTI Systems"

- MPC performance depends on careful parameter selection
- Prediction horizon affects stability and computation
- Weight matrices balance state vs control objectives
- Systematic tuning follows an iterative procedure

Remember these key points when implementing your own MPC