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“Tuning Model Predictive Control for LTI Systems”

Design and tune an MPC controller for LTI sys-
tems to meet specified performance criteria
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By the end, you should be able to select appropriate tuning parameters, understand perfor-
mance trade-offs in MPC, and attempt to implement a basic tuned MPC controller




The working principle, graphically
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forecasted y execute u(now)

= see also https://www.youtube.com/watch?v=UROhOmjaHpO!
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prediction horizon
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MPC in formulas

(for LTI systems)

assumed dynamics:  xx41 = Axg + Buyg

N-1
optimization problem: min > x[k] T Qx[k]+ u[k]T Ru[k]+x[N]T Px[N]
ul0],...,u[N] 5o

state cost control cost terminal cost
sit. xkr1 = Ax[k]+ Bu[k] Vke{0,...,N-1}
Ummin < U[K] < Umax
Xmin < X[ k] € Xmax

x[0] = x(t) (initial condition)
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N is called the “prediction horizon length”

Q@ >0, R> 0 are instead weight matrices (that actually are tuning parameters)

P is dubbed the “terminal cost” weight

and the interesting thing is that we can put constraints, that make MPC powerful (but
increase its computational complexity)



https://www.youtube.com/watch?v=UR0hOmjaHp0

Key parameters

N-1
U[O]Tm " kg%) x[k]T Qx[k]+u[k]T Ru[k] +x[N]" Px[N]

state cost control cost terminal cost

= prediction horizon N
= weight matrices Q, R, P
= the constraints parameters Umin, Umax, Xmins Xmax
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But which performance criteria shall we optimize?

notes

= Prediction horizon affects stability and computational load
= Control horizon offers implementation flexibility
= Weights balance state vs. control effort

notes

Standard options:

= settling time

= overshoot

= control effort

= robustness

= computational efficiency
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= Note that these are often conflicting objectives

= You will need to prioritize one or a few of them wrt the other, based on you application - so

you need to know what you want




General trade-offs

N-1
i T +u T u + X T px
u[O]T.',rL[N]k;,X[k] Qx[k]+u[k]" Rulk]+x[N]" Px[N]

state cost control cost terminal cost

= 1 N == better performance but more computations
= 1 Q = faster state convergence but more aggressive control
= 1 R = smoother control but slower response
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Tuning methodology

min Nz_:lx[k]TQx[k]+u[k]TRu[k]+x[N]TPx[N]
u[0],...,u[N] ;o

state cost control cost terminal cost

at every iteration, evaluate the perfor-
mance and iteratively refine the parameters

= start with the infinite horizon equivalent (i.e., LQR)
= move to a shorter prediction horizon (5-20 samples)
= then adjust the weights (Q first, then R)
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= Show example curves of these relationships
» Emphasize application-dependent choices

notes

= Systematic approach prevents trial-and-error
= Physical meaning helps initial guesses




Summarizing

Design and tune an MPC controller for LTI sys-
tems to meet specified performance criteria

= determining performance requirements require simulating and evaluating to
iteratively refine parameters
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Most important python code for this sub-module
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= You should now understand this systematic tuning approach
= Remember the fundamental trade-offs

notes




notes

Model predictive control python toolbox

https://www.do-mpc.com/en/latest/

= Show how to adjust parameters
= Demonstrate effect of changing weights
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Self-assessment material
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https://www.do-mpc.com/en/latest/

Question 1

What is the primary effect of increasing the Q matrix in MPC tuning?
Potential answers:

I: (wrong)  Reduced computational requirements
[I: (wrong)  Smoother control actions
[ll: (correct)  Faster state convergence

IV: (wrong) Increased robustness to disturbances

Solution 1:

The Q matrix weights the state error, so increasing it prioritizes faster convergence
to the desired state.

- Tuning Model Predictive Control for LTI Systems 2

Question 2

What is the fundamental purpose of the terminal cost (P) in MPC?
Potential answers:

I: (wrong)  To reduce the computational complexity of the optimization

II: (correct)  To ensure stability by approximating infinite horizon behavior
[ll: (wrong)  To enforce hard constraints on the system states
IV: (wrong)  To prioritize certain states over others in the transient response
V: (wrong) | do not know

Solution 1:

The terminal cost P is typically chosen as the solution to the algebraic Riccati
equation to guarantee stability, effectively approximating the infinite horizon cost-
tO-gO beyond the pl’ediction horizon N. - Tuning Model Predictive Control for LTI Systems 3
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= see the associated solution(s), if compiled with that ones :)

notes

= see the associated solution(s), if compiled with that ones :)




Question 3

Why might increasing the prediction horizon N improve controller performance?
Potential answers:

I: (wrong) It allows using larger Q matrices in the cost function
[I: (correct)  The controller can account for longer-term system behavior

[lI: (wrong) It reduces the need for state constraints
IV: (wrong) It makes the optimization problem convex
V: (wrong) | do not know
Solution 1:

A longer prediction horizon enables the controller to "see further ahead" and
make better decisions by considering more future states, though this comes at
increased computational cost. - Tuning Model Predictive Control for LTI Systems 4

Question 4

What is the primary consequence of setting R = 0 in the MPC cost function?
Potential answers:

I: (wrong)  The controller will become unstable
[I: (wrong)  The state constraints will be ignored
[Il: (correct)  The controller may use arbitrarily large control inputs

IV: (wrong)  The prediction horizon becomes irrelevant
V: (wrong) | do not know

Solution 1:

The R matrix penalizes control effort. With R=0, the optimizer has no incentive
to limit control inputs, potentially leading to aggressive (and possibly impractical)

control actions. - Tuning Model Predictive Control for LTI Systems 5
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= see the associated solution(s), if compiled with that ones :)
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= see the associated solution(s), if compiled with that ones :)
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Question 5
Which of these represents a fundamental trade-off in MPC tuning?

Potential answers:

I: (wrong)  Between continuous-time and discrete-time formulations

[I: (wrong)  Between state estimation and control computation

Il: (correct Between performance and computational complexit
(correct) 'P . P P y = see the associated solution(s), if compiled with that ones :)
IV: (wrong)  Between linear and nonlinear system models

V: (wrong) | do not know

Solution 1:

MPC involves balancing control performance (better with longer horizons, more
constraints) against computational tractability (worse with these same factors),

WhICh is a fundamental deSign COnSideratiOn. - Tuning Model Predictive Control for LTI Systems 6
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Question 6

What is the main advantage of MPC compared to LQR control?
Potential answers:

I: (wrong)  MPC always requires less computational power

[I: (wrong)  MPC guarantees global optimality for nonlinear systems
[l: (correct) MPC can explicitly handle state and input constraints
IV: (wrong)  MPC doesn't require a system model

V: (wrong) | do not know

= see the associated solution(s), if compiled with that ones :)

Solution 1:

While both are optimal controllers, MPC's key advantage is its ability to explicitly
incorporate and satisfy constraints during the optimization process, which LQR

cannot do natiVely. - Tuning Model Predictive Control for LTI Systems 7
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Recap of sub-module “Tuning MPC for LTI Systems”

= MPC performance depends on careful parameter selection
= Prediction horizon affects stability and computation

= Weight matrices balance state vs control objectives

= Systematic tuning follows an iterative procedure

= Remember these key points when implementing your own MPC
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