
Table of Contents I
PID Controllers

model free tuning
model based tuning (via poles placement)
Most important python code for this sub-module
Self-assessment material

- 1

• this is the table of contents of this document; each section corresponds to a specific part of
the course

notes

PID Controllers

- PID Controllers 1

•

notes



Contents map

developed content units taxonomy levels
empirical tuning of PID u2, e3
pole placement with PID u2, e3

prerequisite content units taxonomy levels
transfer function u1, e2
PID controller u1, e2

- PID Controllers 2

•

notes

Main ILO of sub-module “PID Controllers”

Design a PID controller to place the closed-loop poles at desired locations

- PID Controllers 3

• By the end of this module you shall be able to design a PID controller that achieves desired
dynamics via pole placement.

notes



Crash-slide on PIDs

r(t) ∑ Ki ∫
t

−∞

e(τ)dτ

Kpe(t)

Kd ė(t)

∑ system y(t)+ e(t)
+

+

+−

implicit assumption: we can measure y(t)! (see also
https://www.youtube.com/watch?v=UR0hOmjaHp0!)

- PID Controllers 4

• you will see this controller in big details in the next courses, for now let’s only get some
intuitions

• important thing: we need sensors and processing units, to be able to implement this. This
means that we need to allocate money for buying and installing this piece of hardware - may
be more expensive than open loop control

notes

How does changing the PID gains impact the Closed-Loop response?

KP

↑ Ô⇒ faster response, but may cause overshoot/oscillations
↓ Ô⇒ slower response, reduced overshoot (but higher steady-state error)

KI

↑ Ô⇒ eliminates steady-state error faster, but risks instability/windup
↓ Ô⇒ reduces oscillations but may leave residual error

KD

↑ Ô⇒ dampens oscillations, improves stability (but amplifies noise)
↓ Ô⇒ smoother control, but slower rejection of disturbances

- PID Controllers 5

• Trade-off: aggressive tuning (↑ KP , KI , KD) speeds up response but risks instability
• For your systems, always balance performance with robustness!

notes

https://www.youtube.com/watch?v=UR0hOmjaHp0


model free tuning

- PID Controllers 1

•

notes

Manual Tuning (Trial and Error)

this approach works only for already stable systems!

Algorithm:
• start with all gains at zero (KP = 0, KI = 0, KD = 0)
• increase KP until the system oscillates
• add KD to dampen oscillations
• introduce KI to eliminate steady-state error
• iteratively fine-tune for desired performance

- PID Controllers 2

• This requires no prior knowledge of the plant
• This is also simple but time-consuming; and you can do it only if you have stable systems

notes



Ziegler-Nichols (Open-Loop) Method
(A step-response based tuning)

Algorithm:
• Apply a step input, and measure:

• dead time (L), i.e., if there is a delay before the response
• time constant (T )

• Use the Z-N table:

KP = 1.2T /L TI = 2L TD = 0.5L

• Connect in closed-loop, test, and refine

- PID Controllers 3

• It seems like magic, but actually it has some theoretical foundations
• Note that this works well for first-order + delay systems
• Note also that this typically gives a conservative starting point, and in practice one may need

to do some refinement

notes

Ziegler-Nichols (Closed-Loop) Method
(. . . for a more aggressive tuning)

Algorithm:
• Set KI = 0, KD = 0
• Increase KP until the output shows sustained oscillations (Ku)
• Measure the oscillation period (Pu)
• Use the alternative Z-N table

KP = 0.6Ku TI = Pu/2 Td = Pu/8

• Test, and refine

- PID Controllers 4

• Risk of instability during tuning
• Best for systems where testing oscillations is safe

notes



Other Empirical PID Tuning Methods

When no plant model is available

• Relay Tuning (Åström-Hägglund): set on-off switching to estimate Ku and Pu
• Cohen-Coon: optimized for disturbance rejection (open-loop)
• Tyreus-Luyben: conservative Z-N modification for robustness
• Software Auto-Tuning: automated gain calculation via test signals

- PID Controllers 5

• Choice depends on system safety, noise, and performance requirements

notes

When Matlab definitely rules
https://www.mathworks.com/help/slcontrol/cat_scd_pid_autotuning.html

- PID Controllers 6

• this method implements some autotuning algorithms, essentially sending some probing signals
and performing the tuning automatically. Very powerful and works well very often

notes

https://www.mathworks.com/help/slcontrol/cat_scd_pid_autotuning.html


When shall I use model-free PID tuning?

When, simultaneously:
• the plant dynamics are simple
• there are no big safety risks
• a rough tuning suffices
• you need quick deployment

- PID Controllers 7

• you won’t make a bad choice if:
• your plant dynamics are slow, stable, low-order systems like temperature control
• performing oscillations or step tests are not an issue
• there are no strict performance requirements
• you have no time for doing system identification
• thus, model-free methods trade off robustness for simplicity
• always validate tuned parameters in a safe environment!

notes

When shall I avoid model-free PID tuning?

If at least one of the following happens:
• the system is unstable/high-order
• doing testing means risking damaging something
• precision is critical
• you know that strong nonlinearities will be present

- PID Controllers 8

• you are going to get into troubles if:
• you have unstable or complex dynamics, as inverted pendulums, aerospace systems etc
• you are dealing with high-speed motors, chemical processes, or potentially dangerous stuff

(things that achieve any form of high energy states)
• you spent a lot of money on the plant, and you want it to perform – e.g., medical devices,

robotics
• if you have some hysteresis, dead zones, and strong nonlinearities in general, then you shall

not do model free PIDs

notes



model based tuning (via poles placement)

- PID Controllers 1

•

notes

Example with a first-order plant
Given: G(s) = 1

s + 1 (first-order system)

Goal: have a closed-loop pole at s = −4

Try: use a proportional controller: C(s) = KP

Find the closed-loop TF: KPG(s)
1 +KPG(s)

=
KP

s + 1 +KP

Set the parameter accordingly: s + (1 +KP) = s + 4 Ô⇒ KP = 3

- PID Controllers 2

• This shows how to match closed-loop poles with desired dynamics

notes



Example with a second-order plant
Given: G(s) = 1

s(s + 1)
Goal: have two closed-loop poles at s = −2 ± j2 (and thus s2

+ 4s + 8)

Try: use a PID controller: C(s) = KP +
KI
s
+KDs

Find the closed-loop TF: i.e., find the ddenominator of 1+C(s)G(s) and set it so to
contain the wished roots

- PID Controllers 3

• Start from desired poles get desired polynomial match with real system

notes

Summarizing, poles placement =
• pick the desired poles based on time response specifics
• derive desired characteristic polynomial
• write the closed-loop transfer function with the PID parameters
• match the polynomials & solve for KP , KI , KD

- PID Controllers 4

• You should now be able to apply this pseudo-algorithm to tune a PID by pole placement
• essentially you shall solve for KP , KI , KD so that closed-loop denominator matches what you

want

notes



Will you always be able to place all the poles where you want?

NO!

- PID Controllers 5

• Note that you may not be able to place the poles where you want (i.e., the systems above to
do not have solutions)

• this is an indication that the controller structure that you chose has not enough complexity
to enable you to do the ’poles picking’ operation

notes

Most important python code for this sub-module

- PID Controllers 1

•

notes



Python Enables Symbolic Matching of PID Coefficients
sympy

- PID Controllers 2

• Symbolically compute closed-loop polynomial and match to desired one

notes

Self-assessment material

- PID Controllers 1

•

notes



Question 1

What is the first step in designing a PID controller using pole placement?

Potential answers:

I: (wrong) Tune KP using trial-and-error
II: (wrong) Write the plant transfer function in state-space

III: (correct) Choose desired closed-loop poles based on time-domain specs
IV: (wrong) Set the integral gain to zero initially

Solution 1:

The first step is to decide where you want the poles to bethis determines the
desired system behavior.

- PID Controllers 2

• see the associated solution(s), if compiled with that ones :)

notes

Question 2

What is the main goal of pole placement when designing a controller?

Potential answers:

I: (wrong) To cancel all poles and zeros of the system
II: (correct) To achieve desired time-domain behavior such as settling time

and overshoot
III: (wrong) To make the transfer function purely algebraic
IV: (wrong) To eliminate the need for feedback
V: (wrong) I do not know

Solution 1:

Pole placement is used to ensure the closed-loop poles correspond to desired
system dynamics, influencing speed, damping, and stability. - PID Controllers 3

• see the associated solution(s), if compiled with that ones :)

notes



Question 3

How does the derivative term (KD) in a PID controller primarily affect the pole
placement of a system?

Potential answers:

I: (wrong) It shifts the system poles toward the imaginary axis
II: (wrong) It always eliminates steady-state error

III: (wrong) It has no influence on the pole placement
IV: (correct) It influences the damping and stability by modifying the char-

acteristic equation
V: (wrong) I do not know

Solution 1:

The derivative term modifies the system’s dynamics, particularly by increasing
damping and thus influencing the position of the closed-loop poles.

- PID Controllers 4

• see the associated solution(s), if compiled with that ones :)

notes

Question 4

What is the key mathematical operation used to design PID gains through pole
placement?

Potential answers:

I: (wrong) Taking the inverse Laplace transform of the plant
II: (wrong) Eliminating zeros from the open-loop transfer function

III: (correct) Matching the closed-loop characteristic polynomial to a desired
one

IV: (wrong) Factorizing the numerator of the open-loop transfer function
V: (wrong) I do not know

Solution 1:

Pole placement design requires expressing the closed-loop characteristic equation
and matching its coefficients with those of a desired polynomial to solve for the
PID gains.

- PID Controllers 5

• see the associated solution(s), if compiled with that ones :)

notes



Question 5

In a first-order system controlled by a proportional gain KP , what is the effect of
increasing KP?

Potential answers:

I: (correct) The pole moves further left on the real axis, increasing system
speed

II: (wrong) The pole becomes complex and causes oscillations
III: (wrong) The system gain decreases and response slows down
IV: (wrong) The zero of the system moves into the right-half plane
V: (wrong) I do not know

Solution 1:

For first-order systems, increasing KP moves the closed-loop pole leftward (more
negative real part), which speeds up the response.

- PID Controllers 6

• see the associated solution(s), if compiled with that ones :)

notes

Question 6

Which of the following best describes the correct order of steps for PID pole placement
design?

Potential answers:

I: (wrong) Compute the system output first, then choose PID gains, then
set desired poles

II: (wrong) Start with experimental PID gains, simulate, and refine based
on intuition

III: (correct) Choose desired poles, derive the corresponding characteristic
polynomial, and match it with the actual closed-loop polynomial to solve for
gains

IV: (wrong) Eliminate the need for poles by transforming to frequency domain
V: (wrong) I do not know

Solution 1:

Correct PID pole placement design involves selecting desired dynamics, deriving
the polynomial that produces them, and solving for PID parameters by matching
coefficients.

- PID Controllers 7

• see the associated solution(s), if compiled with that ones :)

notes



Recap of sub-module “PID Controllers”
• Pole placement allows us to achieve desired dynamics
• PID gains shift the closed-loop poles
• Match desired characteristic polynomial with actual one
• Use symbolic or numerical tools to solve for KP , KI , KD

- PID Controllers 8

• The most important remarks from this sub-module are these ones

notes


	PID Controllers

