
Table of Contents I
Introduction to Open-Loop Controller Design

Most important python code for this sub-module
Self-assessment material

Introduction to closed-loop controller design
Most important python code for this sub-module
Self-assessment material

- 1

• this is the table of contents of this document; each section corresponds to a specific part of
the course

notes

Introduction to Open-Loop Controller Design

- Introduction to Open-Loop Controller Design 1

•

notes



Contents map

developed content units taxonomy levels
closed-loop control u1, e1
open-loop control u1, e1

prerequisite content units taxonomy levels
LTI system u1, e1

- Introduction to Open-Loop Controller Design 2

•

notes

Main ILO of sub-module “Introduction to Open-Loop Controller Design”

Explain the difference between open-loop and closed-loop con-
trol architectures, using the car speed control example as context.

Formulate the mathematical model of a physical system (car
dynamics) and linearize it around a desired equilibrium point.

Design a basic open-loop controller by inverting the sys-
tem model or its DC gain, and analyze its limitations in
terms of disturbance rejection and parameter sensitivity.

Evaluate the trade-offs between response speed and actuator effort
when implementing pole cancellation in open-loop control design.

Assess the practical challenges of implementing open-loop control in
real-world systems, using the automatic gate example as a case study.- Introduction to Open-Loop Controller Design 3

• by the end of this module you shall be able to understand and apply basic open-loop control
design principles

notes



Roadmap
• overview of the structure
• building intuition through an example

- Introduction to Open-Loop Controller Design 4

• In this part of the course, we’re going to take our first steps into the world of controller design.
Specifically, well look at open-loop control, and well use a simple but illustrative example
controlling the speed of a car to build our intuition.

• The idea is to first understand the control architecture, and then go step-by-step through the
design procedure using a model of the system.

notes

What do we learn now?
introduction to how to design an open-loop controller

- Introduction to Open-Loop Controller Design 5

• The goal now is to understand how we can design an open-loop controller. That means we’re
going to find a way to compute the control input u(t) that will hopefully drive the system
output y(t) to follow a desired behavior, without relying on feedback.

• This is conceptually simpler than feedback control, but as well see, it comes with significant
limitations.

notes



Basic Control Architectures: open-loop vs. closed-loop (or feedback)

r controller plant

d

yu

r controller plant

d

y

filter

+ e u
−

- Introduction to Open-Loop Controller Design 6

• Let me briefly highlight the difference between open-loop and closed-loop control. In open-
loop control, we decide on the control action u(t) purely based on the reference r(t) and a
model there is no checking whether the output actually follows.

• In closed-loop control, we use feedback: we measure the output y(t), compare it with the
reference r(t), and adjust u(t) accordingly.

• In this course, we will mostly focus on feedback control, but its important to understand
open-loop control as a baseline.

notes

Example: car speed control

Signals:
• output: y(t) car speed
• input: u(t) force generated by an engine
• disturbance: d(t) road slope

- Introduction to Open-Loop Controller Design 7

• Let’s consider a car moving on an inclined road. We want to control its speed that’s our
output, y(t).

• The force generated by the engine is our control input, u(t). And then we have the road
slope, d(t), acting as a disturbance that affects the motion of the car but is not something
we can directly control.

notes



Example: car speed control

Goal:
find u(t) = φ(⋆) such that y(t) ≃ αr(t) regardless of d

- Introduction to Open-Loop Controller Design 8

• Our goal is to find a function φ(⋆) that is, the control law which takes in known quantities
and returns the control input u(t) that will drive y(t) to approximately follow αr(t), no
matter what the disturbance d(t) is doing.

• α is a scaling factor it might be 1, or something else depending on the system and units.

notes

Example: car speed control

Model parameters:
• m: car mass
• b: friction coefficient
• g : gravitational acceleration

- Introduction to Open-Loop Controller Design 9

• These are the key physical parameters of our model. We’ll use them to build a mathematical
model of how the car moves.

• m is the mass of the car heavier cars are harder to accelerate. b is a friction or damping
coefficient, representing things like air resistance and internal friction. g is the acceleration
due to gravity.

notes



how to do it?

Strategy:
• find the system model
• linearize it around the desired equilibrium
• find the transfer function of the system
• design the controller so that the closed-loop system transfer function is the one

we want

- Introduction to Open-Loop Controller Design 10

• This is our plan. First, we need a model how does the system behave?
• Then we linearize it, because most controller design tools assume linear systems.
• After that, we move to the frequency domain using the Laplace transform, and describe the

system with a transfer function.
• Finally, we design a controller so that the resulting closed-loop behavior matches our design

goals.

notes

Example: car speed control

Model:
mẏ(t) = −by(t) + u(t) −mg sin (d(∫ ydt))

- Introduction to Open-Loop Controller Design 11

• This is the nonlinear model. The dynamics include the slope of the road, which depends on
the cars position thats why you see the integral of y(t) in there.

• The term with the sine is what makes this model nonlinear and harder to work with directly.

notes



Example: car speed control

Linearized model:
mẏ(t) = −by(t) + u(t) −mgd(t)

- Introduction to Open-Loop Controller Design 12

• After linearization, things simplify. The sine term becomes just d(t), assuming small angles.
• Now we have a linear differential equation, which is much easier to handle and is suitable for

our controller design.

notes

Example: car speed control

Laplace (model):
Y (s) = 1

ms + b
(U(s) −mgD(s))

- Introduction to Open-Loop Controller Design 13

• Taking the Laplace transform of the linear model gives us this transfer function form.
• It clearly shows how Y (s) depends on both U(s) and the disturbance D(s). Our job is to

choose U(s) to get Y (s) as close as possible to what we want, ideally cancelling the effect
of D(s).

notes



Fundamental architectures for car speed control: open-loop vs. closed-loop
(or feedback)

r controller plant

d

yu

r controller plant

d

y

filter

+ e u
−

- Introduction to Open-Loop Controller Design 14

• This figure shows the key difference between open-loop and feedback control architectures.
• In open-loop, we compute u(t) based on the reference and model no correction is done if

the system doesn’t behave as expected.
• In feedback control, we constantly compare the actual output with the reference, and adjust

u(t) accordingly. This is much more robust to disturbances and model inaccuracies.

notes

Car speed control in open loop
= inversion of the system model

goal: y(t) ≃ αr(t) i.e. Wry(s) = α
- Introduction to Open-Loop Controller Design 15

• Here, we are inverting the model that is, we try to solve for u(t) that makes y(t) behave
like αr(t).

• This approach works perfectly on paper if the model is exact and there are no disturbances.
But reality is messier.

• Also, as we’ll see, this kind of controller may not be implementable in practice.

notes



What are the problems?

How to solve this? We settle for the output to follow the reference only at steady state
Ô⇒ we only invert the DC gain

- Introduction to Open-Loop Controller Design 16

• The first issue is that the controller is non-causal it requires knowledge of future values of
the reference. Thats not physically realizable.

• The second issue is sensitivity to modeling errors and disturbances if anything deviates from
our model, we lose performance.

• One way to mitigate this is to design the system to only track the reference in steady-state
that is, we try to match the final value, not the full trajectory.

notes

Car speed control in open loop
= inversion of the system model gain

Ô⇒ Wry(s) =
αb

ms + b
Ô⇒ Wry(0) = α Ô⇒ y(∞) = αr(∞)

but the rise time depends on m and b!

- Introduction to Open-Loop Controller Design 17

• So here’s the problem with this simple approach: while we can set the final speed correctly
through , we have no control over how quickly the car reaches that speed.

• The response speed is entirely determined by the car’s mass m and friction coefficient b -
parameters we often can’t change in practice.

• Imagine you’re driving and want to accelerate to 100 km/h. With this method, you’d reach
the right speed eventually, but you couldn’t choose whether it takes 5 seconds or 30 seconds!

notes



Car speed control in open loop
= inversion of the system model gain and cancellation of the stable pole

Ô⇒ Wry(s) =
α

τs + 1
Ô⇒ Wry(0) = α Ô⇒ y(∞) = αr(∞)

and the rise time depends on the controller parameters

- Introduction to Open-Loop Controller Design 18

• Now we’ve improved our controller to also shape the response time through . But there’s a
catch!

• The faster we want the system to respond (smaller ), the harder we’re pushing our actuators
- in this case, the car’s engine.

• Think about flooring the accelerator pedal - you get quick acceleration, but at what cost?
Fuel efficiency suffers, engine wear increases, and passengers get uncomfortable.

• There’s always this trade-off between performance and practical limitations in real systems.

notes

What if we could measure or predict d?

- Introduction to Open-Loop Controller Design 19

• Let me ask you this: In real driving, what’s the biggest factor affecting your speed besides
the accelerator? That’s right - hills!

• If we could measure the slope ahead (maybe with sensors or GPS data), could we use that
information to improve our control?

• This is like when you see a hill coming and press the accelerator a bit more before you start
slowing down.

• But here’s the question: How practical is it to measure all possible disturbances perfectly?
And what happens if our measurements are slightly off?

notes



Open-loop control of a car’s speed

Y (s) =Wry(s)R(s) +Wdy(s)D(s)

Wdy(s) = (mg −mg) 1
ms + b

= 0

- Introduction to Open-Loop Controller Design 20

• Here we see mathematically how measuring and compensating for disturbances could theo-
retically eliminate their effect completely.

• In practice, this would be like having a perfect hill detection system that automatically adjusts
your accelerator exactly right.

• But remember, this requires perfect knowledge - we’d need to know the exact mass of the
car, the exact slope angle, and react instantly.

• What happens if we overestimate the slope? We might accelerate too much. Underestimate?
We still slow down.

• This shows both the potential and limitations of disturbance compensation.

notes

Generalization of the example

• Objectives of open-loop control: Wry(s) ≃ α Wdy(s) ≃ 0
• Problems of open-loop control:

• need to know exactly the model and its parameters
• need to measure disturbances
• impossibility to control unstable systems

- Introduction to Open-Loop Controller Design 21

• Let me summarize the key takeaways from our car example to general systems.
• Open-loop control is like trying to shoot a target blindfolded - if you know exactly how to

aim and nothing changes, you might hit it.
• But in reality, wind might blow (disturbances), your arm might shake (parameter variations),

or the target might move (model uncertainties).
• The fundamental issue is there’s no feedback - no way to see if you’re actually hitting the

target and adjust accordingly.
• This is why in most real-world applications, we need something more robust - which brings

us to closed-loop control.

notes



Practical example: DIY automatic gate in open loop
Recipe:

• buy and install the gate
• do some experiments to understand the linear regime
• create a model from the data
• invert it
• build an RCL circuit that implements that controller

- Introduction to Open-Loop Controller Design 22

• Imagine you’re actually building this automatic gate controller. Sounds straightforward, right?
• But what happens when temperatures change and the gate’s friction increases in winter?
• Or when leaves get stuck in the mechanism adding unexpected resistance?
• Your carefully designed open-loop controller wouldn’t know to push harder - the gate would

just stop short of closing completely.
• This is why you see real automatic gates using feedback - sensors that check if the gate

actually reached the end position.
• Open-loop works fine in ideal, controlled conditions, but reality is rarely so cooperative!

notes

Summarizing

Explain the difference between open-loop and closed-loop con-
trol architectures, using the car speed control example as context.

Formulate the mathematical model of a physical system (car
dynamics) and linearize it around a desired equilibrium point.

Design a basic open-loop controller by inverting the sys-
tem model or its DC gain, and analyze its limitations in
terms of disturbance rejection and parameter sensitivity.

Evaluate the trade-offs between response speed and actuator effort
when implementing pole cancellation in open-loop control design.

Assess the practical challenges of implementing open-loop control in
real-world systems, using the automatic gate example as a case study.- Introduction to Open-Loop Controller Design 23

• you should now be able to understand and apply basic open-loop control design principles

notes



Most important python code for this sub-module

- Introduction to Open-Loop Controller Design 1

•

notes

The python.control library
. . . as virtually in all the modules of this part of the course

- Introduction to Open-Loop Controller Design 2

• the control library is basically essential

notes



Self-assessment material

- Introduction to Open-Loop Controller Design 1

•

notes

Question 1

What is the fundamental limitation of open-loop control compared to closed-loop
control?

Potential answers:

I: (wrong) It requires more computational power
II: (correct) It cannot compensate for unmeasured disturbances or model

inaccuracies
III: (wrong) It only works for nonlinear systems
IV: (wrong) It requires more sensors than closed-loop control
V: (wrong) I do not know

Solution 1:

The key limitation of open-loop control is its inability to compensate for distur-
bances or model errors since it doesn’t use feedback. While closed-loop control
can adjust based on the actual output, open-loop control blindly applies its pre-
determined control action regardless of what actually happens to the system.

- Introduction to Open-Loop Controller Design 2

• see the associated solution(s), if compiled with that ones :)

notes



Question 2

Why do we typically linearize nonlinear system models before designing controllers?

Potential answers:

I: (wrong) Because all physical systems are fundamentally linear
II: (wrong) Because nonlinear controllers cannot be implemented in practice

III: (correct) Because most controller design tools and analysis methods are
developed for linear systems

IV: (wrong) Because linearization increases system stability
V: (wrong) I do not know

Solution 1:

We linearize nonlinear models because the vast majority of controller design tech-
niques (including transfer function analysis, frequency response methods, and pole
placement) are developed for linear systems. Linearization allows us to apply these
powerful tools while maintaining reasonable accuracy near the operating point.

- Introduction to Open-Loop Controller Design 3

• see the associated solution(s), if compiled with that ones :)

notes

Question 3

In the car speed control example, why can’t perfect disturbance rejection be achieved
in practice through open-loop control?

Potential answers:

I: (wrong) Because disturbances cannot be measured under any circum-
stances

II: (correct) Because it requires perfect knowledge of both the system model
and disturbance characteristics

III: (wrong) Because open-loop controllers are inherently unstable
IV: (wrong) Because the car’s mass changes during operation
V: (wrong) I do not know

Solution 1:

Perfect disturbance rejection would require exact knowledge of both the system
parameters (mass, friction coefficient) and the precise characteristics of the dis-
turbance (road slope). In reality, both system parameters and disturbances have
uncertainties, making perfect compensation impossible in open-loop.

- Introduction to Open-Loop Controller Design 4

• see the associated solution(s), if compiled with that ones :)

notes



Question 4

What is the main practical issue with designing an open-loop controller by perfectly
inverting the system model?

Potential answers:

I: (wrong) It makes the system too fast
II: (correct) It often results in a non-causal controller that requires knowledge

of future inputs
III: (wrong) It requires solving differential equations in real-time
IV: (wrong) It makes the control signal too smooth
V: (wrong) I do not know

Solution 1:

Perfect model inversion typically leads to non-causal controllers that would need
to anticipate future reference signals, which is physically impossible to implement
in real-time systems. This is why practical open-loop designs often settle for
steady-state accuracy rather than perfect tracking.

- Introduction to Open-Loop Controller Design 5

• see the associated solution(s), if compiled with that ones :)

notes

Question 5

In the car speed control example, why might choosing a very small time constant in
the controller be problematic?

Potential answers:

I: (wrong) It would make the controller too simple
II: (correct) It would require unrealistically large control forces from the

engine
III: (wrong) It would make the car accelerate too slowly
IV: (wrong) It would prevent the car from reaching the desired speed
V: (wrong) I do not know

Solution 1:

A very small (fast response) would demand extremely large control forces because
the controller would try to achieve the desired speed almost instantaneously. Real
engines have limited power, and such demands could lead to actuator saturation,
excessive fuel consumption, or mechanical stress.

- Introduction to Open-Loop Controller Design 6

• see the associated solution(s), if compiled with that ones :)

notes



Recap of module “Introduction to Open-Loop Controller Design”
• open-loop control is structurally simple but not very robust

- Introduction to Open-Loop Controller Design 7

• If you remember just one thing from this module, it’s this: open-loop control is like riding a
bike with your eyes closed.

• It might work if the path is perfectly straight and predictable, but the moment something
unexpected happens, you’re in trouble.

• The simplicity is appealing - no sensors needed, just pure calculation. But this simplicity
comes at the cost of fragility.

• As engineers, we need to understand both the theoretical appeal and practical limitations of
each approach.

notes

Introduction to closed-loop controller design

- Introduction to closed-loop controller design 1

•

notes



Contents map

developed content units taxonomy levels
closed-loop control u1, e1

prerequisite content units taxonomy levels
LTI system u1, e1

- Introduction to closed-loop controller design 2

•

notes

Main ILO of sub-module “Introduction to closed-loop controller design”

Explain the fundamental differences between open-loop and closed-loop
control systems in terms of error correction and disturbance rejection

- Introduction to closed-loop controller design 3

• you should now be able to distinguish control architectures

notes



Roadmap
• what it is
• examples

- Introduction to closed-loop controller design 4

• Today we’re starting a crucial new topic that addresses all the limitations we saw in open-loop
control.

• First, we’ll understand what exactly closed-loop control is at a conceptual level.
• Then we’ll look at concrete examples to build our intuition before diving into the mathematics.
• By the end of this lecture, you should understand why feedback is so powerful despite its

added complexity.

notes

What do we learn now?
introduction to how to design a closed-loop controller

- Introduction to closed-loop controller design 5

• This is where control theory gets really exciting! We’re moving from fragile open-loop systems
to robust closed-loop designs.

• You’ll learn the fundamental principles that enable everything from cruise control to spacecraft
navigation.

• The key idea is simple: use feedback to automatically correct errors, but the implications are
profound.

• Over the next few lectures, you’ll gain tools to design systems that can maintain performance
despite uncertainties and disturbances.

notes



Fundamental control architectures: open-loop vs. closed-loop (or
feedback)

r controller plant

d

yu

r controller plant

d

y

filter

+ e u
−

- Introduction to closed-loop controller design 6

• Let me explain why feedback is such a game-changer. In closed-loop control, we’re constantly
checking our actual output against our desired output - it’s like riding that bike with your
eyes open!

• The magic happens because the controller automatically adjusts its actions based on the
tracking error. No need for perfect knowledge of the system or disturbances.

• Think about how you shower: you don’t calculate exactly how much to turn the tap - you
feel the water temperature and adjust continuously. That’s feedback control!

• The closed path of signals creates a self-correcting system. Any deviation creates forces that
try to eliminate that deviation.

• This is why feedback systems can handle uncertainties and disturbances that would completely
derail open-loop systems.

notes

Notation
• G(s): Transfer function of the system to be controlled
• H(s): Transfer function of the sensor
• C(s): Transfer function of the controller
• F(s): Transfer function of the shaping filter

- Introduction to closed-loop controller design 7

• Before we dive deeper, let’s get comfortable with the standard notation we’ll be using through-
out this course.

• Notice that disturbances can enter at multiple points - not just at the input. A wind gust
affects a car differently than a change in road slope!

• The sensor block H(s) is crucial - real feedback depends on measuring the output, and no
sensor is perfect.

• The shaping filter F(s) lets us modify how the reference signal is presented to the system -
like smoothing out abrupt commands.

• Understanding this general structure will help you analyze any feedback system you encounter.

notes



By moving blocks we can switch to standard notation

r C(s) G(s)

d

y+ e u +
+

−

- Introduction to closed-loop controller design 8

• So heres whats going on: by cleverly rearranging the blocks in our diagram, we can bring it
into a more standard formone that matches the canonical feedback loop format we typically
analyze. This doesn’t change the system’s behavior, but it makes the math and reasoning that
follow much more convenient. Its like tidying your workspace before diving into a complex
tasksame tools, but a much smoother process.

notes

But what would we ideally want?

r C(s) G(s)

d

y+ e u +
+

−

Wry(s) =
C(s)G(s)

1 + C(s)G(s)
≈ 1 Ô⇒ y(t) ≈ r(t)

Wdy(s) =
1

1 + C(s)G(s)
≈ 0 Ô⇒ y(t) ≈ not affected by d(t)

- Introduction to closed-loop controller design 9

• Now, lets dream a bit. Ideally, we want our system output y(t) to follow the reference r(t)
as closely as possible. Thats what the first equation tells uswhen the loop gain C(s)G(s) is
large, the transfer function from reference to output approaches 1. At the same time, wed
love it if disturbances d(t) had no effect on the output. And look at the second equation:
when C(s)G(s) is large, the disturbance gets suppressed. So we get great tracking and
disturbance rejectionthis is the holy grail of feedback control!

notes



And how is it done 90% of the time?

r C(s) G(s)

d

y+ e u +
+

−

With
• C(s) = Kp, proportional controller

• C(s) = Kp +
Ki
s

, proportional-integral controller
• C(s) = Kp +Kds, proportional-derivative controller

• C(s) = Kp +
Ki
s
+Kds, proportional-integral-derivative controller

- Introduction to closed-loop controller design 10

• So how do we achieve that ideal behavior we just talked about? In the vast majority of
practical applications, we do it with a PID controller or one of its simpler forms. The P,
PI, PD, and full PID controllers are the workhorses of the industry. They’re simple, pow-
erful, and surprisingly effective in many situations. If you’re wondering why they work so
well, I really recommend this video: https://www.youtube.com/watch?v=UR0hOmjaHp0&
pp=ygUOcGlkIGNvbnRyb2xsZXI%3D. It explains not just the math but also the intuition be-
hind each term.

notes

And how to build a PID?
• analog: https://www.youtube.com/watch?v=Sw3NEA3GEnI
• digital: in a few modules

- Introduction to closed-loop controller design 11

• You might be wonderingOK, I get what a PID is, but how do we actually build one? Well, you
can implement it in hardware, using op-amps in an analog circuitlike in this excellent video:
https://www.youtube.com/watch?v=Sw3NEA3GEnI. Or, as is more common today, you can
implement it digitallyusing code, blocks in a control system library, or on a microcontroller.
Digital implementations give you a lot of flexibility and are the standard in most modern
applications.

notes

https://www.youtube.com/watch?v=UR0hOmjaHp0&pp=ygUOcGlkIGNvbnRyb2xsZXI%3D
https://www.youtube.com/watch?v=UR0hOmjaHp0&pp=ygUOcGlkIGNvbnRyb2xsZXI%3D
https://www.youtube.com/watch?v=Sw3NEA3GEnI
https://www.youtube.com/watch?v=Sw3NEA3GEnI


Example: car speed control with a P controller

with C(s) = K and G(s) = 1
ms + b

, implying

Wry(s) =
C(s)G(s)

1 + C(s)G(s)
=

K
ms + b +K

≈ 1 Ô⇒ y(t) ≈ r(t)

Wdy(s) =
−mgG(s)

1 + C(s)G(s)
=

−mg
ms + b +K

≈ 0 Ô⇒ y(t) ≈ not affected by d(t)

- Introduction to closed-loop controller design 12

• Lets go through the math here so you see where these expressions come from. First, for the
reference-to-output path:

Wry(s) =
C(s)G(s)

1 + C(s)G(s)
=

K
ms+b

1 + K
ms+b

=

K
ms+b

K+ms+b
ms+b

which simplifies to K
ms + b +K

. Similarly, for the disturbance path:

Wdy(s) =
−mgG(s)

1 + C(s)G(s)
=

−mg
ms+b

1 + K
ms+b

=

−mg
ms+b

ms+b+K
ms+b

so you get −mg
ms + b +K

. The takeaway is simple: by increasing K , we make Wry(s) closer to
1 and Wdy(s) closer to 0better tracking, better disturbance rejection.

notes

Summarizing

Explain the fundamental differences between open-loop and closed-loop
control systems in terms of error correction and disturbance rejection

- Introduction to closed-loop controller design 13

• you should now be able to distinguish control architectures

notes



Most important python code for this sub-module

- Introduction to closed-loop controller design 1

•

notes

The python.control library
. . . as virtually in all the modules of this part of the course

- Introduction to closed-loop controller design 2

• the control library is basically essential

notes



Self-assessment material

- Introduction to closed-loop controller design 1

•

notes

Question 6

What is the primary conceptual advantage of closed-loop control over open-loop
control?

Potential answers:

I: (correct) Ability to automatically correct errors using feedback
II: (wrong) Higher computational efficiency in implementation

III: (wrong) Elimination of all system disturbances
IV: (wrong) Reduced need for sensors in the system
V: (wrong) I do not know

Solution 1:

The primary advantage of closed-loop control is its ability to automatically correct
errors using feedback. Unlike open-loop systems, closed-loop systems continu-
ously compare the actual output with the desired reference and adjust accord-
ingly, making them robust to uncertainties and disturbances. The other options
are incorrect: closed-loop control often requires more computation (not less),
cannot eliminate all disturbances, and actually requires sensors (not fewer).

- Introduction to closed-loop controller design 2

• see the associated solution(s), if compiled with that ones :)

notes



Question 7

Why are PID controllers so widely used in practice despite their simplicity?

Potential answers:

I: (wrong) They can perfectly eliminate all system nonlinearities
II: (correct) They provide effective performance across many applications

with relatively simple implementation
III: (wrong) They require no tuning parameters for optimal performance
IV: (wrong) They eliminate the need for system modeling entirely
V: (wrong) I do not know

Solution 1:

PID controllers are widely used because they offer effective performance across
many applications with relatively simple implementation. The proportional term
responds to present error, the integral term addresses accumulated past errors,
and the derivative term anticipates future errors. While they don’t eliminate
nonlinearities (first option), do require tuning (third option), and still benefit
from system modeling (fourth option), their balanced performance makes them
practical for many real-world systems.

- Introduction to closed-loop controller design 3

• see the associated solution(s), if compiled with that ones :)

notes

Question 8

In the standard closed-loop control notation, what does the transfer function
Wdy(s) ≈ 0 imply about the system?

Potential answers:

I: (wrong) The system cannot track reference signals
II: (wrong) The controller has become unstable

III: (correct) The system effectively rejects disturbances
IV: (wrong) The sensor measurements are inaccurate
V: (wrong) I do not know

Solution 1:

When Wdy(s) ≈ 0, it means the transfer function from disturbances to output is
nearly zero, indicating effective disturbance rejection. This is a desirable property
of well-designed feedback systems. The first option is incorrect because reference
tracking is governed by Wry(s). The second option is unrelated to disturbance
rejection, and the fourth option concerns sensor performance rather than the
disturbance transfer function.

- Introduction to closed-loop controller design 4

• see the associated solution(s), if compiled with that ones :)

notes



Question 9

What fundamental limitation prevents a real control system from achieving perfect
tracking (Wry(s) = 1) and perfect disturbance rejection (Wdy(s) = 0) simultaneously?

Potential answers:

I: (wrong) The need for digital implementation
II: (wrong) Sensor accuracy limitations

III: (correct) Fundamental trade-offs between performance, robustness, and
stability

IV: (wrong) The cost of high-quality actuators
V: (wrong) I do not know

Solution 1:

The fundamental limitation arises from trade-offs between performance, robust-
ness, and stability. While increasing controller gain can improve both tracking
and disturbance rejection, practical systems face limits due to stability constraints,
actuator saturation, and robustness requirements. The other options, while po-
tentially important in specific cases, are not fundamental limitations in the same
way as these inherent trade-offs.

- Introduction to closed-loop controller design 5

• see the associated solution(s), if compiled with that ones :)

notes

Question 10

In the car speed control example with a P controller, what happens to both Wry(s)
and Wdy(s) as the proportional gain K is increased?

Potential answers:

I: (wrong) Both transfer functions approach infinity
II: (wrong) Wry(s) approaches 0 while Wdy(s) approaches 1

III: (correct) Wry(s) approaches 1 while Wdy(s) approaches 0
IV: (wrong) Both transfer functions become oscillatory
V: (wrong) I do not know

Solution 1:

As K increases, Wry(s) =
K

ms + b +K
approaches 1 (better tracking), while

Wdy(s) =
−mg

ms + b +K
approaches 0 (better disturbance rejection). This demon-

strates the dual benefits of high-gain feedback. The first option is incorrect as
neither transfer function grows without bound. The second option reverses the
desired behavior. The fourth option might occur with excessive gain but isn’t
guaranteed.

- Introduction to closed-loop controller design 6

• see the associated solution(s), if compiled with that ones :)

notes



Recap of module “Introduction to closed-loop controller design”
• feedback control is more promising, but requires designing more things compared

to open loop

- Introduction to closed-loop controller design 7

• Before we wrap up, lets recap the key message: feedback control can dramatically improve
system performancebetter tracking, disturbance rejection, and robustness. But it doesnt come
for free. You need to carefully design your controller, and that takes insight, math, and often
some trial and error. Still, its usually worth it.

notes


	Introduction to Open-Loop Controller Design
	Introduction to closed-loop controller design

