
Table of Contents I
Visualizing systems with block schemes

Operations with the block schemes
Interconnections
Reduction of block schemes to a single block
Most important python code for this sub-module
Self-assessment material

- 1

• this is the table of contents of this document; each section corresponds to a specific part of
the course

notes

Visualizing systems with block schemes

- Visualizing systems with block schemes 1

•

notes

Contents map

developed content units taxonomy levels
block scheme u1, e1

prerequisite content units taxonomy levels
ODEs u1, e1

- Visualizing systems with block schemes 2

•

notes

Main ILO of sub-module “Visualizing systems with block schemes”

Explain the purpose of block diagrams in control systems
by comparing their industrial and analytical applications

Construct block diagram representations of first-order differential equa-
tions by identifying and connecting appropriate functional blocks

Distinguish between static and dynamic blocks by analyzing
their mathematical representations and memory requirements

Simplify complex block diagrams to single equivalent blocks
by applying series, parallel, and feedback reduction rules

Interpret feedback loops in block diagrams by relating
their presence to system equations and dynamic behavior

- Visualizing systems with block schemes 3

• By the end of this module you shall be able to: translate equations to diagrams, analyze
block properties, perform diagram reductions, and explain feedback implications

• Focus on conceptual understanding rather than rote procedures
• Apply these skills to both analysis and design contexts

notes

Roadmap
• the most common block schemes
• first order systems as block schemes

- Visualizing systems with block schemes 4

• this module is quite lightweight, and discusses only graphical representations

notes

Block diagrams - why?
• used very often in companies
• aid visualization (until a certain complexity is reached. . .)
• enable “drag & drop” way of programming

• in this course, primarily used for interpretations

- Visualizing systems with block schemes 5

• When you’ll work in industry, you’ll see these diagrams everywhere - they’re the lingua franca
of control engineers

• The visualization helps tremendously, though I must warn you - when systems get really
complex, the diagrams can become messy

• The drag & drop approach makes programming controllers much more intuitive than writing
pure code

• For our course, pay special attention to how we’ll use them to interpret system behavior

notes

Block diagrams - why? Part 2
Convenient operation in control systems analysis

• step 1: identify single-input single-output subsets (blocks)
• step 2: represent the overall system as an interconnection of such subsets

- Visualizing systems with block schemes 6

• Think of this like building with Lego blocks - we first identify simple components, then connect
them

• This modular approach is powerful because complex systems become manageable when broken
down

• In exams, I’ll often ask you to follow exactly this two-step process when analyzing systems
• Remember: even the most complex control system in a rocket is just many SISO blocks

connected together

notes

Static block (a.k.a. memoryless block)
= representation of a static (i.e., instantaneous) relationship between input and output

y(t) = f (u(t))

u(t) f (⋅) y(t)

they can be linear or nonlinear, depending on f (⋅)

- Visualizing systems with block schemes 7

• This is the simplest type of block - what goes in immediately affects what comes out
• Imagine this like a simple math function - put in a number, get out a result, no memory

involved
• The linear case is like y=ax, while nonlinear could be y=xš - we’ll see both are important
• Practical example: a resistor is a static block (V=RI), while a capacitor is dynamic

notes

Dynamic block (a.k.a. block with memory)
= representation of a dynamic relationship between input and output (i.e., such that
the output y(t) at time t does not depend only on the input u(t) at the same time t,
but also on its behavior at different times – potentially not only past)

y(t) = f (u, y)

u(t) f (⋅) y(t)

they can be linear or nonlinear, depending on f (⋅)

- Visualizing systems with block schemes 8

• Now we’re dealing with systems that have memory - like your brain remembering past inputs
• This is where things get interesting! The output depends on history, not just the present
• The equation shows y depends on both u and itself - this recursive nature is crucial
• Most physical systems are dynamic - think of a car’s suspension or a heating system
• The linear case leads us to transfer functions, which we’ll study in depth

notes

Example of dynamic block: transfer function

y(t) = y`(t) + u ∗ h(t)

u(t) H(s) y(t)

- Visualizing systems with block schemes 9

• Here we see the power of Laplace transforms - differential equations become algebraic!
• The transfer function H(s) encapsulates all the system dynamics in one neat package
• The convolution (that * symbol) shows how past inputs affect current output
• We’ll spend weeks working with these - they’re that important in control theory
• The y(t) term represents initial conditions - never forget these in your exams!

notes

Operations with the block schemes

- Visualizing systems with block schemes 1

•

notes

Most common block diagrams - sum of n signals

x1

x2

x3

x1 − x2 + x3
+
−
+

- Visualizing systems with block schemes 2

• This circle with many inputs is our workhorse for combining signals
• Notice the + and - signs - they’re crucial for feedback control
• In practice, these represent physical summing junctions in analog systems
• When you see this, think "algebraic sum" - all inputs added according to their signs
• Pro tip: Always double-check the signs during exams!

notes

Most common block diagrams - multiplication for a constant

x c cx

- Visualizing systems with block schemes 3

• This simple block represents amplification or attenuation
• The K can be a gain in an amplifier or a conversion constant
• In physical systems, think of this as a lever or a gear ratio
• Surprisingly powerful - most linear controllers are just fancy versions of this!
• Remember: The arrow direction matters - Kx is different from xK in matrix cases

notes

Most common block diagrams - multiplication of two signals

x1

x2
× x1x2

- Visualizing systems with block schemes 4

• Now we’re entering nonlinear territory - exciting!
• This represents physical phenomena like mixing or modulation
• Notice there’s no Œ symbol - we use adjacency to denote multiplication
• Common in real systems: think of volume control (signal Œ gain)
• Warning: Analyzing systems with these gets complex fast!

notes

Most common block diagrams - generic functions

x f (⋅) f (x)

- Visualizing systems with block schemes 5

• This is our "anything goes" block - f can be any mathematical function
• We use this when standard blocks don’t capture the relationship
• Examples: sensors with nonlinear responses, lookup tables, AI components
• The challenge: How to analyze systems with these? We’ll learn methods
• On your drawings, always label f clearly - is it sin(), exp(), or something else?

notes

Most common block diagrams - derivatives

x d
dt

ẋ

- Visualizing systems with block schemes 6

• The s operator represents differentiation - a powerful concept
• Physically, think of this as a dashpot or any rate-sensitive device
• In control, derivatives help anticipate future behavior (D-control)
• Warning: Derivatives amplify noise - be careful in real implementations
• We’ll see how to handle these properly when we study PID controllers

notes

Most common block diagrams - integrals

x ∫0
+∫

t

0
xdt

∫0

- Visualizing systems with block schemes 7

• The 1/s operator is integration - the opposite of differentiation
• Physically, this represents accumulation - like water in a tank
• In control, integrals eliminate steady-state error (I-control)
• Crucial point: Never forget initial conditions with integrators!
• Practical issue: Integrators can wind up - we’ll discuss anti-windup techniques
• Remember: In discrete systems, integration becomes summation

notes

Discussion: how do we represent a first order differential equation with a
block scheme?

ẏ = ay + bu

- Visualizing systems with block schemes 8

• Let’s think together about how to translate this equation into a block diagram - it’s like
building with Legos!

• First, identify the components: we have a derivative, a multiplication, and a sum
• The video will show the step-by-step construction, but try to sketch it yourself first
• Remember: ẏ means we’ll need an integrator block to get y from ẏ
• This simple example contains all the key concepts we’ll use for more complex systems

notes

The solution
ẏ = ay + bu

u b y

y0

a

+
+

Discussion: do you note the presence of a feedback loop?

- Visualizing systems with block schemes 9

• Here’s the complete picture - notice how we’ve translated each mathematical operation into
a block

• The integrator (1/s block) is crucial - it’s what makes this system dynamic
• The gain blocks a and b represent the equation coefficients
• That feedback loop is the heart of the system’s behavior! It’s what makes the solution

exponential
• This is our first example of feedback - something we’ll see everywhere in control systems
• The negative sign in the feedback is important - it creates stability in many cases
• Think about physical examples: RC circuits, thermal systems - they all have this structure

notes

Interconnections

- Visualizing systems with block schemes 1

•

notes

Branching points and summing junctions

- Visualizing systems with block schemes 2

• These are the "plumbing" components of our block diagrams - they route signals
• The branching point is like a T-joint in pipes - it duplicates a signal without changing it
• Summing junctions are where signals combine - crucial for feedback and feedforward
• In real systems, these represent physical connections or mathematical operations
• Always check your connections twice - it’s easy to misplace a + or - sign!

notes

Branching points

= blocks with one input u(t) and two outputs y1(t), y2(t), in which

y1(t) = u(t)
y2(t) = u(t)

- Visualizing systems with block schemes 3

• This is the simplest "splitter" - one input, two identical outputs
• Physically, think of a wire splitting into two, or a signal being measured while also being used
• No computation happens here - it’s just signal distribution
• In digital systems, this represents data being sent to multiple processes
• Important: The branches don’t affect each other - no loading effects in ideal diagrams

notes

Junctions

= blocks with two inputs u1(t), u2(t) and one output y(t), in which

y(t) = u1(t) + u2(t)

or
y(t) = u1(t) − u2(t)

- Visualizing systems with block schemes 4

• These circles are the workhorses of control systems - where signals combine
• The signs are crucial! A misplaced minus can turn negative feedback into positive
• In analog circuits, these represent operational amplifier configurations
• The output is instantaneous - no memory or dynamics in the junction itself
• Notice how compact the notation is - a whole computation in one symbol!

notes

Reduction of block schemes to a single block

- Visualizing systems with block schemes 1

•

notes

Example

complicated Ô⇒ can we rewrite it in a simpler way? Algebraic relations:
Y (s) =W (s)U(s)
U(s) = G1(s)E(s) +G2(s)R(s)
E(s) = R(s) −H(s)Y (s) - Visualizing systems with block schemes 2

• This looks complex, but we can tame it step by step - like solving a puzzle
• First approach: Write all equations, then substitute - the "brute force" method
• Second approach: Look for patterns we can simplify piece by piece
• The goal is to find Y(s)/R(s) - the overall transfer function
• Notice the feedback loop through H(s) - that will be key to our solution

notes

Example, part 2

Y (s) =W (s)U(s)
U(s) = G1(s)E(s) +G2(s)R(s)
E(s) = R(s) −H(s)Y (s)

implies
Y (s) =W (s) [G1(s)E(s) +G2(s)R(s)]

=W (s) [G1(s)(R(s) −H(s)Y (s)) +G2(s)R(s)]
multiplying and grouping terms in $Y(s)$ and in $R(s)$ separately we obtain

(1 +W (s)G1(s)H(s))Y (s) =W (s) (G1(s) +G2(s))R(s)

therefore
Y (s)
R(s)

=
W (s) (G1(s) +G2(s))
1 +W (s)G1(s)H(s)

and so the relationship between the input $r(t)$ and the output $y(t)$ can be
described by a single block with transfer function

W (s) (G1(s) +G2(s))
1 +W (s)G1(s)H(s)

and thus the relationship between the input $r(t)$ and the output $y(t)$ can be
described by a single block with transfer function

W (s) (G1(s) +G2(s))
1 +W (s)G1(s)H(s)

- Visualizing systems with block schemes 3

• See how the algebra systematically simplifies the diagram? That’s the power of transfer
functions!

• The denominator 1+WGH is characteristic of feedback systems - remember this form
• The numerator combines the parallel paths (G+G) through W
• This result tells us the entire system’s behavior in one compact expression
• You’ll use this exact procedure many times in control design and analysis

notes

Reduction of block diagrams to a single block
Specific case: series or parallel blocks

- Visualizing systems with block schemes 4

• Series connection: Multiply the transfer functions - like a chain of systems
• Parallel connection: Add the transfer functions - like multiple paths
• These are the block diagram equivalents of basic arithmetic operations
• Important: The order matters in series connection (GG GG in general)
• These rules let us collapse complex diagrams piece by piece

notes

Reduction of block diagrams to a single block
Specific case: feedback

- Visualizing systems with block schemes 5

• This is the most important reduction rule - the feedback formula
• Notice the characteristic form: G/(1+GH) for negative feedback
• The denominator 1+GH determines stability - we’ll study this deeply later
• Positive feedback would have 1-GH in the denominator
• This single formula explains how control systems can regulate themselves

notes

Reduction of block diagrams to a single block
Specific case: moving blocks around

- Visualizing systems with block schemes 6

• These are like "algebraic identities" for block diagrams
• Moving blocks past summing junctions requires adjusting the paths
• These rules help rearrange diagrams into standard forms we can reduce
• Very useful when dealing with complex interconnections
• Remember: These transformations must preserve the overall input-output relationship

notes

Suggested videos introducing Simulink
• https://www.youtube.com/watch?v=pFICO_syIIs (10 minutes)
• https://www.youtube.com/watch?v=QIAxyLchf4k (50 minutes)

- Visualizing systems with block schemes 7

• a lot of companies use Simulink, a Matlab-based graphical programming environment for
modeling, simulating and analyzing multidomain dynamical systems

• it can be integrated with the rest of the Matlab environment (i.e., either drive or be scripted
from it)

• so maybe better to take a look at the first video, if you never used it before
• we are not going to use it in this course

notes

https://www.youtube.com/watch?v=pFICO_syIIs
https://www.youtube.com/watch?v=QIAxyLchf4k

Summarizing

Explain the purpose of block diagrams in control systems
by comparing their industrial and analytical applications

Construct block diagram representations of first-order differential equa-
tions by identifying and connecting appropriate functional blocks

Distinguish between static and dynamic blocks by analyzing
their mathematical representations and memory requirements

Simplify complex block diagrams to single equivalent blocks
by applying series, parallel, and feedback reduction rules

Interpret feedback loops in block diagrams by relating
their presence to system equations and dynamic behavior

- Visualizing systems with block schemes 8

• you should now be able to do this, following the information given in the slides above

notes

Most important python code for this sub-module

- Visualizing systems with block schemes 1

•

notes

The control package
Example:

• # Series connection
series = control.series(G1, G2)

• # Parallel connection
parallel = control.parallel(G1, G2)

• # Feedback connection feedback = control.feedback(G1, G2)

- Visualizing systems with block schemes 2

• this python library is definitely useful for control engineers!

notes

Self-assessment material

- Visualizing systems with block schemes 1

•

notes

Question 1

In a block diagram representation of a first-order differential equation ẏ = ay + bu, why
does the feedback path emerge?

Potential answers:

I: (wrong) Because we need to implement a controller
II: (correct) Because the output y affects its own rate of change ẏ

III: (wrong) Because all dynamic systems require feedback
IV: (wrong) Because it represents the input signal u(t)
V: (wrong) I do not know

Solution 1:

The feedback path emerges naturally from the mathematical structure of the
differential equation itself. The term ay means the current state y influences its
own derivative ẏ , creating an inherent feedback relationship. This isn’t added by
design but is fundamental to the system’s dynamics.

- Visualizing systems with block schemes 2

• see the associated solution(s), if compiled with that ones :)

notes

Question 2

What is the fundamental difference between a branching point and a summing junction
in block diagrams?

Potential answers:

I: (wrong) Branching points perform calculations while summing junctions
don’t

II: (correct) Branching points duplicate signals while summing junctions
combine them

III: (wrong) Summing junctions can only handle two inputs while branching
points can have many outputs

IV: (wrong) Branching points require memory while summing junctions are
memoryless

V: (wrong) I do not know

Solution 1:

Branching points and summing junctions serve fundamentally different purposes.
A branching point (represented by a simple node) duplicates a signal without
modification to multiple paths. A summing junction (represented by a circle with
+/ signs) performs algebraic operations to combine multiple input signals into
one output signal. Both are memoryless operations.

- Visualizing systems with block schemes 3

• see the associated solution(s), if compiled with that ones :)

notes

Question 3

When reducing a complex block diagram to a single equivalent block, what does the
denominator of the resulting transfer function typically represent?

Potential answers:

I: (wrong) The gain of the input signal
II: (wrong) The time delay of the system

III: (correct) The feedback characteristics of the system
IV: (wrong) The nonlinearities in the system
V: (wrong) I do not know

Solution 1:

The denominator of the reduced transfer function (typically in the form 1 +
GH) captures the system’s feedback characteristics. This term determines crucial
properties like stability and dynamic response. The numerator represents the
forward path characteristics. This distinction is fundamental to understanding
closed-loop system behavior.

- Visualizing systems with block schemes 4

• see the associated solution(s), if compiled with that ones :)

notes

Question 4

Why does a dynamic block require memory while a static block doesn’t?

Potential answers:

I: (wrong) Because dynamic blocks are always digital implementations
II: (correct) Because dynamic blocks depend on past values of input/output

III: (wrong) Because static blocks can only represent linear relationships
IV: (wrong) Because dynamic blocks operate at higher frequencies
V: (wrong) I do not know

Solution 1:

The key distinction lies in time-dependence. Static blocks represent instantaneous
relationships (output depends only on current input), while dynamic blocks rep-
resent relationships where the output depends on the history of inputs/outputs
(through derivatives, integrals, or delays). This historical dependence is what we
mean by "memory" in systems.

- Visualizing systems with block schemes 5

• see the associated solution(s), if compiled with that ones :)

notes

Question 5

What is the conceptual reason why series-connected blocks can be reduced by
multiplying their transfer functions?

Potential answers:

I: (wrong) Because multiplication is commutative
II: (wrong) Because it’s an arbitrary convention

III: (correct) Because each block’s output becomes the next block’s input
IV: (wrong) Because the Laplace transform requires it
V: (wrong) I do not know

Solution 1:

The multiplication rule emerges naturally from the series connection structure.
The first block’s output G1(s)X(s) becomes the second block’s input, which then
outputs G2(s)[G1(s)X(s)] = [G2(s)G1(s)]X(s). This chaining of operations
mathematically leads to multiplication of transfer functions. The commutative
property is a consequence, not the reason.

- Visualizing systems with block schemes 6

• see the associated solution(s), if compiled with that ones :)

notes

Recap of module “Visualizing systems with block schemes”
• block representations are alternative representations
• they enable graphical coding, that is used quite a lot in big companies

- Visualizing systems with block schemes 7

• what we learned in this module is this

notes

	Visualizing systems with block schemes

