Table of Contents I Ill conditioning

- - Most important python code for this sub-module
 - Self-assessment material

• this is the table of contents of this document; each section corresponds to a specific part of the course

- 1

Contents map

developed content units	taxonomy levels
ill conditioning	u1, e1
ill posedness	u1, e1

prerequisite content units	taxonomy levels
least squares regression	u1, e1

- III conditioning 2

Main ILO of sub-module "Ill conditioning"

Describe what ill conditioning and ill posedness mean, in the context of system identification

Recognize when ill conditioning may happen in practice

Starting point: system identification

starting from

$$y[k] = f(u[k], u[k-1], \dots) + d[k] \qquad \mathcal{D} = \{u[k], y[k]\}_{k \in \mathcal{K}}$$

identify the model $f(\cdot)$

- III conditioning 4

Definition of ill-posedness and ill-conditioning

$$y[k] = f(u[k], u[k-1], \dots) + d[k] \qquad \mathcal{D} = \{u[k], y[k]\}_{k \in \mathcal{K}}$$

- *ill-posed problem (in the Hadamard sense):* solution is either not unique or does not depend continuously on the data
- *ill-conditioned problem:* solution is very sensitive to the data

Example: the Hunt reconstruction problem (continuous-time LTI with sampled output)

- III conditioning 6

This problem can be solved with linear algebra!

$$\mathbf{y} = U\mathbf{h} + \mathbf{d} \quad \Rightarrow \quad \widehat{\mathbf{h}} = (U^T U)^{-1} U^T \mathbf{y}$$

notes .

Is the Hunt reconstruction problem well defined?

What is happening?

$$\boldsymbol{e} = \boldsymbol{h} - \widehat{\boldsymbol{h}} = U^{-1} \boldsymbol{d}$$

$$\frac{\|\boldsymbol{e}\|}{\|\boldsymbol{h}\|} \leq \frac{\sigma_{\max}(U)}{\sigma_{\min}(U)} \frac{\|\boldsymbol{d}\|}{\|U\boldsymbol{h}\|}$$

• the slower *u* the higher $\frac{\sigma_{\max}(U)}{\sigma_{\min}(U)}$

• the faster Δ the higher $\frac{\sigma_{\max}(U)}{\sigma_{\min}(U)}$

 This equation quantifies the problem. The reconstruction error is amplified by the condition number of U. If that number is large, even tiny noise d becomes huge error e. And what makes the condition number large? Slow input signals, or high-frequency systems. So now were connecting theory with practice: how you choose your input signal really matters.

notes

- III conditioning 10

Summarizing

Describe what ill conditioning and ill posedness mean, in the context of system identification

how can we improve our estimates? → regularization

Recognize when ill conditioning may happen in practice

TODO

Most important python code for this sub-module

- III conditioning 1

Linear algebra tools

- numpy.linalg.solve
- numpy.linalg.inv

Self-assessment material

- III conditioning 1

- III conditioning 2

Question 1

Which of the following best describes the difference between an ill-posed and an ill-conditioned problem in system identification?

Potential answers:

- I: (wrong) Ill-conditioned problems have no solution, while ill-posed problems have too many.
- II: (correct) III-posed problems may lack uniqueness or continuous dependence on the data, while iII-conditioned problems are extremely sensitive to small changes in data.
- III: (wrong) III-posed problems always have unstable solutions, while ill-conditioned ones always diverge.
- IV: (wrong) Ill-conditioning is due to randomness in the input, while illposedness is due to measurement noise.
- V: (wrong) I do not know

notes
 see the associated solution(s), if compiled with that ones :)

notes

Solution 1:

${\small Question} \ 2$

Why does the Hunt reconstruction problem become ill-conditioned as the length of the input increases?

Potential answers:

l: (<u>wrong</u>)	Because more data always makes the system overdetermined.
II: (correct)	Because slow or non-diverse input signals lead to poor numerical

- conditioning of the matrix U.
- III: (wrong) Because increasing the number of samples reduces the noise-to-signal ratio.
- IV: (wrong) Because the model structure becomes nonlinear with large N.
- V: (wrong) I do not know

Solution 1:

- III conditioning 3

When input signals change slowly or are not sufficiently rich, the matrix U formed by the convolution becomes poorly conditioned, meaning the singular values vary greatly. This increases the condition number, making the estimation highly sensitive to measurement noise.

Question 3

In the context of system identification, what does the condition number $\frac{\sigma_{\max}(U)}{\sigma_{\min}(U)}$ represent?

Potential answers:

- I: (correct) The maximum amplification of relative errors in the data to the estimation error.
- II: (wrong) The rate of convergence of the optimization algorithm used.
- III: (wrong) The ratio between input and output power in the system.
- IV: (wrong) The likelihood that a model is nonlinear.
- V: (wrong) I do not know

Solution 1:

The condition number quantifies how sensitive the output of a system (e.g., the difference of the system (e.g., the data). A high condition number indicates that even small noise in the data can lead to large errors in the solution

notes

see the associated solution(s), if compiled with that ones :)

Question 4

What is a practical way to reduce ill-conditioning in system identification?

Potential answers:		
I: (<u>correct</u>)	Use richer or faster-varying input signals during data collection. Use fewer data points to simplify the estimation problem	
III: (wrong) collection.	Reduce the noise artificially in the measurements after data	
IV: (wrong) V: (wrong)	Make the input signal constant over time to ensure stability. I do not know	

Solution 1:

One way to improve the conditioning of the identification problem is to use an input signal that excites a wide range of system dynamics. This helps ensure that conditioning 5 matrix U has more balanced singular values, reducing the condition number.

Question 5

Why is regularization used when solving ill-conditioned system identification problems?

Potential answers:		
I: (wrong)	To make the inverse of U exactly equal to zero.	
ll: (correct)	To stabilize the solution by penalizing large parameter values	
or enforcing	g smoothness.	
III: (wrong)	To reduce the condition number by artificially shrinking the	
data.		
IV: (wrong)	To avoid computing the inverse of the matrix altogether.	
V: (wrong)	l do not know	

Solution 1:

Regularization introduces additional constraints (e.g., on the norm of the param_{1|| conditioning 6} eter vector) to control the sensitivity of the solution to noise in the data. It does not remove ill-conditioning but mitigates its effects, often improving generalization.

Recap of sub-module "Ill conditioning"

- Ill-posed problems may lack a solution, have multiple solutions, or be highly sensitive to small changes in data
- Ill-conditioned problems have a solution, but it is numerically unstable and highly sensitive to input errors
- The condition number of a matrix quantifies the degree of ill-conditioning; a high condition number indicates poor numerical stability
- In system identification, slowly varying or insufficiently rich input signals can lead to ill-conditioning
- Regularization techniques can mitigate the effects of ill-conditioning by introducing stability through additional constraints
- Choosing appropriate input signals is critical to ensuring well-posed and well-conditioned identification problems
- Understanding the structure and properties of the data matrix (e.g., *U* in least squares problems) is essential to diagnose ill-conditioning

- III conditioning 7

