
Table of Contents I
Ill conditioning

Most important python code for this sub-module
Self-assessment material

- 1

• this is the table of contents of this document; each section corresponds to a specific part of
the course

notes

Ill conditioning

- Ill conditioning 1

•

notes

Contents map

developed content units taxonomy levels
ill conditioning u1, e1
ill posedness u1, e1

prerequisite content units taxonomy levels
least squares regression u1, e1

- Ill conditioning 2

•

notes

Main ILO of sub-module “Ill conditioning”

Describe what ill conditioning and ill posed-
ness mean, in the context of system identification

Recognize when ill conditioning may happen in practice

- Ill conditioning 3

• By the end of this module, I want you to be able to tell whether a system identification
problem might be hard to solvenot because the algorithm is wrong, but because the problem
itself is "tricky" in a mathematical sense. We’ll break down what it means for a problem to
be ill-posed or ill-conditioned, and most importantly, how to spot it in real data.

notes

Starting point: system identification
starting from

y[k] = f (u[k], u[k − 1], . . .) + d[k] D = {u[k], y[k]}k∈K

identify the model f (⋅)

U F Y

- Ill conditioning 4

• Let’s start from the general setting: we have an inputoutput dataset, and our goal is to find a
model that maps inputs to outputs. In other words, we’re doing system identification. Sounds
simple, right? But whether or not this is a well-posed problem depends on things like the
structure of the data, how noisy it is, and how we model f (⋅). This will be our playground
for understanding ill-posedness and ill-conditioning.

notes

Definition of ill-posedness and ill-conditioning

y[k] = f (u[k], u[k − 1], . . .) + d[k] D = {u[k], y[k]}k∈K

U F Y

• ill-posed problem (in the Hadamard sense): solution is either not unique or does
not depend continuously on the data

• ill-conditioned problem: solution is very sensitive to the data

- Ill conditioning 5

• These definitions might sound abstract, but here’s the intuition. A problem is ill-posed
if there’s no unique solution, or if small changes in the data can cause huge changes in
the result. Ill-conditioning is a bit more subtle: the solution exists and is unique, but it’s
extremely sensitive to small errorslike noise in your measurements. Both are bad news when
you’re trying to learn a model from data.

notes

Example: the Hunt reconstruction problem
(continuous-time LTI with sampled output)

h(t) = exp(−(t − 0.4
0.075

)
2
) + exp(−(t − 0.6

0.075
)

2
) u(t) = { 1 if 0 ≤ t ≤ 0.25

0 otherwise

ynoiseless(t) = ∫
+∞

0
h(τ)u(t − τ)dτ y[k] = ynoiseless[k] + v(k)

0.5 1
0

1

t

h(t)
u(t)
ynoiseless(t)
y[k]

- Ill conditioning 6

• This is a classic reconstruction problem: were trying to recover the impulse response h(t)
from noisy output samples. Even if this looks innocent, it turns out to be a perfect example
of an ill-conditioned problem. We’ll see why very soon. For now, just get familiar with the
idea that even in simple-looking setups, things can go wrong when noise and sampling are
involved.

notes

This problem can be solved with linear algebra!

y = Uh + d ⇒ ĥ = (UT U)−1 UT y

- Ill conditioning 7

• So far, were just applying linear algebra: youve seen this in least squares regression. The
cool part is that this integral problem becomes a linear system. But heres the catch: just
because you can write down the inverse doesnt mean it behaves well. Whether or not this
works depends heavily on the properties of the matrix U.

notes

Is the Hunt reconstruction problem well defined?

0.5 1
0

1
t

h(t)
h[k] N = 100
ĥ[k]
h[k] N = 200
ĥ[k]
h[k] N = 1000
ĥ[k]

0.5 1
0

100

t

h(t)
h[k] N = 1000
ĥ[k]

- Ill conditioning 8

• Heres where the issue becomes visible: small changes in the measurements lead to wildly
different reconstructions. Thats a clear sign of ill-conditioning. Notice how the reconstruction
improves only when we throw a huge amount of data at the problem. So its not wrong, but
its very fragile.

notes

What is happening?

e = h − ĥ = U−1d

∥e∥
∥h∥
≤

σmax(U)
σmin(U)

∥d∥
∥Uh∥

• the slower u the higher σmax(U)
σmin(U)

• the faster ∆ the higher σmax(U)
σmin(U)

- Ill conditioning 9

• This equation quantifies the problem. The reconstruction error is amplified by the condition
number of U. If that number is large, even tiny noise d becomes huge error e. And what
makes the condition number large? Slow input signals, or high-frequency systems. So now
were connecting theory with practice: how you choose your input signal really matters.

notes

how can we improve our estimates?
↦ regularization

- Ill conditioning 10

• So what can we do about it? If the problem is ill-conditioned, regularization can help. Its
like adding some "reasonable assumptions" to stabilize the solution. Thats what well look at
next.

notes

Summarizing

Describe what ill conditioning and ill posed-
ness mean, in the context of system identification

Recognize when ill conditioning may happen in practice

• TODO

- Ill conditioning 11

• You should now be able to tell whether a system identification problem is ill-posed or ill-
conditioned, and explain why that matters. Use the inputoutput data structure and ask: is
the mapping well-behaved? Is it sensitive to noise? And remember, in practice, its not just
about having a solutionits about having a reliable one.

notes

Most important python code for this sub-module

- Ill conditioning 1

•

notes

Linear algebra tools
• numpy.linalg.solve
• numpy.linalg.inv

- Ill conditioning 2

• when discussing ill-conditioning, we’re typically dealing with numerical computation issues
that arise in linear algebra, optimization, and other mathematical operations, so all the Python
code that refer to that are related to this module

notes

Self-assessment material

- Ill conditioning 1

•

notes

Question 1

Which of the following best describes the difference between an ill-posed and an
ill-conditioned problem in system identification?

Potential answers:

I: (wrong) Ill-conditioned problems have no solution, while ill-posed prob-
lems have too many.

II: (correct) Ill-posed problems may lack uniqueness or continuous depen-
dence on the data, while ill-conditioned problems are extremely sensitive to
small changes in data.

III: (wrong) Ill-posed problems always have unstable solutions, while ill-
conditioned ones always diverge.

IV: (wrong) Ill-conditioning is due to randomness in the input, while ill-
posedness is due to measurement noise.

V: (wrong) I do not know

Solution 1:

An ill-posed problem, in the Hadamard sense, is one where the solution may not
exist, be unique, or depend continuously on the input data. An ill-conditioned
problem, in contrast, has a solution, but it is highly sensitive to small changes in
the input data.

- Ill conditioning 2

• see the associated solution(s), if compiled with that ones :)

notes

Question 2

Why does the Hunt reconstruction problem become ill-conditioned as the length of the
input increases?

Potential answers:

I: (wrong) Because more data always makes the system overdetermined.
II: (correct) Because slow or non-diverse input signals lead to poor numerical

conditioning of the matrix U.
III: (wrong) Because increasing the number of samples reduces the noise-

to-signal ratio.
IV: (wrong) Because the model structure becomes nonlinear with large N.
V: (wrong) I do not know

Solution 1:

When input signals change slowly or are not sufficiently rich, the matrix U formed
by the convolution becomes poorly conditioned, meaning the singular values vary
greatly. This increases the condition number, making the estimation highly sen-
sitive to measurement noise.

- Ill conditioning 3

• see the associated solution(s), if compiled with that ones :)

notes

Question 3

In the context of system identification, what does the condition number σmax(U)
σmin(U)

represent?

Potential answers:

I: (correct) The maximum amplification of relative errors in the data to
the estimation error.

II: (wrong) The rate of convergence of the optimization algorithm used.
III: (wrong) The ratio between input and output power in the system.
IV: (wrong) The likelihood that a model is nonlinear.
V: (wrong) I do not know

Solution 1:

The condition number quantifies how sensitive the output of a system (e.g., the
estimated parameters) is to small changes in the input (e.g., the data). A high
condition number indicates that even small noise in the data can lead to large
errors in the solution.

- Ill conditioning 4

• see the associated solution(s), if compiled with that ones :)

notes

Question 4

What is a practical way to reduce ill-conditioning in system identification?

Potential answers:

I: (correct) Use richer or faster-varying input signals during data collection.
II: (wrong) Use fewer data points to simplify the estimation problem.

III: (wrong) Reduce the noise artificially in the measurements after data
collection.

IV: (wrong) Make the input signal constant over time to ensure stability.
V: (wrong) I do not know

Solution 1:

One way to improve the conditioning of the identification problem is to use an
input signal that excites a wide range of system dynamics. This helps ensure the
matrix U has more balanced singular values, reducing the condition number.

- Ill conditioning 5

• see the associated solution(s), if compiled with that ones :)

notes

Question 5

Why is regularization used when solving ill-conditioned system identification problems?

Potential answers:

I: (wrong) To make the inverse of U exactly equal to zero.
II: (correct) To stabilize the solution by penalizing large parameter values

or enforcing smoothness.
III: (wrong) To reduce the condition number by artificially shrinking the

data.
IV: (wrong) To avoid computing the inverse of the matrix altogether.
V: (wrong) I do not know

Solution 1:

Regularization introduces additional constraints (e.g., on the norm of the param-
eter vector) to control the sensitivity of the solution to noise in the data. It does
not remove ill-conditioning but mitigates its effects, often improving generaliza-
tion.

- Ill conditioning 6

• see the associated solution(s), if compiled with that ones :)

notes

Recap of sub-module “Ill conditioning”
• Ill-posed problems may lack a solution, have multiple solutions, or be highly

sensitive to small changes in data
• Ill-conditioned problems have a solution, but it is numerically unstable and highly

sensitive to input errors
• The condition number of a matrix quantifies the degree of ill-conditioning; a high

condition number indicates poor numerical stability
• In system identification, slowly varying or insufficiently rich input signals can lead

to ill-conditioning
• Regularization techniques can mitigate the effects of ill-conditioning by

introducing stability through additional constraints
• Choosing appropriate input signals is critical to ensuring well-posed and

well-conditioned identification problems
• Understanding the structure and properties of the data matrix (e.g., U in least

squares problems) is essential to diagnose ill-conditioning
- Ill conditioning 7

• the most important remarks from this sub-module are these ones

notes

	Ill conditioning

