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• this is the table of contents of this document; each section corresponds to a specific part of
the course
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Contents map

developed content units taxonomy levels
least squares u1, e1

prerequisite content units taxonomy levels
dataset u1, e1
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Main ILO of sub-module “Least squares estimators”

Describe the concept of least squares in geometrical perspectives

Derive and use the normal equations for
solving separable least squares problems

- Least squares estimators 3

• by the end of this module you shall be able to do this

notes



Basic assumptions

data generation model: yt = f (ut ; θ) + vt

dataset: D = {(ut , yt)}t=1,...,N

hypothesis space: θ ∈ Θ

Problem: find a θ̂ ∈ Θ that “best explains” D

- Least squares estimators 4

• assume that we have selected a model structure, that means that we hypothesize that the
data is generated according to a certain data generation model

• importantly, we do not know θ and we want to estimate it
• remember: the choice of the model structure is an assumption, i.e., we think that the data is

generated following the model structure that we chose. We can practically never know if this
is actually true though. However sometimes the model structure that we choose is a good
guess, so that even if there is some mismatch we practically are happy with it

• beyond having chosen the model structure, we also have collected a dataset (this is given,
typically there is no “user choice” here – exceptions being if we want to pre-process the
dataset because we want to remove outliers or filter some noise)

• we finally know that the unknown parameter that we want to estimate lives in a certain set
• what we want to do is to estimate the unknown parameter in the sense (to be clarified soon)

that we want to “explain” the dataset

notes

Geometrical interpretation
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• what does it mean to “explain”?
• assume that the inputs u and the outputs y are fixed. They will be two vectors, one living in

Ru and one in Ry (i.e., the dimensions of these vectors may be different)
• assume that we choose a particular θ = θ1 (say, e.g., θ1 = [1, 2, 3]). Note that θ will be a

vector in Rθ, i.e., its dimension is also in general different from the dimension of u and y .
But if we plug this specific θ1 into the vector of f ’s, then that vector will have the same
dimension of y , so that we can compare the two

• now for each θ, since u is fixed, we thus find a (in general) different f , but this f has the
same dimension of y (that is fixed), so that we can compute the distance ∥y − fθi ∥

• so the θ that best explains the dataset y and u is that one that makes f as close as possible
to y

• Label the axis to make it more clear. take the example with just two thetas

notes



Question 1

Consider
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varying u1, . . . , uN but keeping θ fixed corresponds in general to find:

Potential answers:

I: (wrong) a scalar
II: (wrong) a vector

III: (correct) a manifold
IV: (wrong) I do not know
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• see the associated solution(s), if compiled with that ones :)

notes

mathematical formulation
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•
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Intuitions, towards a mathematical formulation
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• let’s re-see the geometrical intuition we developed before, where the dot is the vector of
measurements, the manifold is all the potential predicted vectors given all the potential
parameters

notes

Mathematical formulation

yt = f (ut ; θ) + vt D = {(ut , yt)}t=1,...,N θ ∈ Θ

θ̂LS = arg min
θ∈Θ
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• let’s formulate mathematically the geometrical intuition we developed before
• as we saw, we can formulate the problem from mathematical perspectives as an optimization

problem where the optimization variable is θ and where its domain is the hypothesis space Θ
• if we use the fact that the Euclidean distance between two vectors can be expressed in terms of

the distances in R of the various components then we can rephrase the optimization problem
in terms of the single measurements that form the dataset

• let’s then introduce one of the most important names of the course, i.e., residual, that is
the “error” that is made through using f to estimate one specific yi . Of course this is a
function of both ui (that is though given and cannot be changed) and θ (that, instead, is our
optimization variable)

• with this notation, the LS problem is “make the residuals as small as possible”
• we will see that this is a recurring theme in statistics in general

notes



Example: regression line
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potential regression line
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yt = θ1 + θ2ut + vt D = {(ut , yt)}
3
t=1 = {(1, 1), (2, 2), (3, 1)} θ ∈ R2

θ̂LS = (θ̂LS,1, θ̂LS,2) = arg min
θ1,θ2∈R
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• let’s see a geometrically inspectable example, i.e., the LS estimate of a regression line
• the dataset is this one
• the data generation model is this one
• and the hypothesis space is this one
• very important! The hypothesis space must always be specified!
• we will indeed see how the topological properties of the hypothesis space have huge influences

on the mathematical properties of the various estimators
• then by using the definition of LS and interpretation of residuals, the optimization problem

becomes this one
• note how this specific problem can be solved by putting the first derivative of the cost to zero

and then checking if the Hessian is positive definite
• we will see soon how actually for this type of linear systems there is the possibility of computing

the solutions through closed formulas

notes

Question 2

Consider

f (u; θ) =
2
∑
k=0

θkuk
D = {(0, 0), (1, 1)} Θ = R2.

How many solutions will the LS problem have?

Potential answers:

I: (wrong) 0
II: (wrong) 1

III: (correct) +∞

IV: (wrong) I do not know
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• see the associated solution(s), if compiled with that ones :)

notes



basic properties

- basic properties 1

•
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Question 3

The concepts behind LS are simple, so it is simple to compute analytically θ̂LS

Potential answers:

I: (wrong) true
II: (correct) false

III: (wrong) I do not know
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• see the associated solution(s), if compiled with that ones :)

notes



Example: computing the LS may be numerically infeasible

ut ∈ R106

f (ut ; θ) extremely nonlinear

D = {(ut , yt)t=1,...,N} , N = 1012

θ ∈ very non-convex set

- basic properties 3

• let’s do not think that since the intuitions behind LS are simple, it means that it is simple to
compute this type of estimators

• eventually it is an optimization problem, and optimization problems may be very nasty from
numerical points of view

notes

Question 4

The LS estimate θ̂LS always exists

Potential answers:

I: (wrong) true
II: (correct) false

III: (wrong) I do not know

- basic properties 4

• see the associated solution(s), if compiled with that ones :)
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Example: the LS estimate may not exist

θ̂LS = arg min
θ∈(0,1)

100
∑
t=1

r2
t (θ) rt(θ) =

1
θ
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• it may also be that there is no estimate, in the same way that some function may do not
admit a minimum

• note that this is something that has a lot to do with the openness of the hypothesis space
• as you may remember, a continuous function over a compact always admits minimum and

maximum (Weierstrass)
• in this specific case the residuals form a continuous function, but the domain is not compact,

and this makes the overall problem have no solution
• this is the first time we see that the topological properties of the hypothesis space play an

important role. Things like this one will happen again in the next modules

notes

Question 5

When it exists, the LS estimate θ̂LS is unique

Potential answers:

I: (wrong) true
II: (correct) false

III: (wrong) I do not know
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• see the associated solution(s), if compiled with that ones :)

notes



Example: the LS estimate is not unique
How many quadratics fit perfectly this dataset?

ut

yt

(1, 1)

(3, 3)
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• we said that the LS estimate corresponds to that θ that minimizes the distance between the
(fixed) y and the (variable) f

• in any situation where there are two different f ’s for which the distance with y is the same
then the LS estimate is not unique

notes

linear least squares

- linear least squares 1

•

notes



If you don’t remember how to do computations with matrices and
vectors. . .

the matrix cookbook

- linear least squares 2

Separable problems
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• let’s now discuss about one very specific type of LS problem, the separable one
• this is very important because it has strong connections with the identification of ARX models
• the name separable comes from the fact that we have that the problem is linear in the

unknowns θ’s
• it is in general non-linear in the ui ’s, but eventually who cares? We know the u’s, so that φj ’s

may be whatever
• it is then convenient to rewrite the problem in a vectorial form
• even better in a matricial form, involving thus the whole dataset
• and at this point we can compact the notation in this way

notes
LS for unconstrained separable problems Ô⇒ normal equations

y = Φ(u)θ + e, θ ∈ Rn θ̂LS = arg min
θ∈Rn
∥y −Φ(u)θ∥2

Ideally, θ̂LS is s.t. Φ(u)θ̂LS = y!

normal equations: Φ(u)T Φ(u)θ̂LS = Φ(u)T y

- linear least squares 4



• we now will see how solving unconstrained separable problems leads to what are called the
normal equations

• it is important to notice that we are having an unconstrained problem here, i.e., the hypothesis
space is the whole Rθ

• so let’s assume that we have this problem
• ideally, what we would like to happen is that the LS solution perfectly explains the dataset
• this happens only if y is in the range of Φ
• in general this does not happen – and if it happens it may be that there is more than one

solution, as we will see soon
• by solving the optimization problem in a matricial form we end up with these equations here,

that are called normal equations
• Discuss the pros and cons of using direct methods in comparison to iterative methods

notes
Exercise

Compute the solution of

arg min
θ∈Rn
(y −Φ(u)θ)

T
W (y −Φ(u)θ)

- linear least squares 5

Question 6

Starting from
Φ(u)T Φ(u)θ̂LS = Φ(u)T y

we can always set
θ̂LS = (Φ(u)T Φ(u))−1 Φ(u)T y

Potential answers:

I: (wrong) true
II: (correct) false

III: (wrong) I do not know

- linear least squares 6

• see the associated solution(s), if compiled with that ones :)

notes



Using the pseudoinverse when necessary

what if Φ(u)T Φ(u) does not have an inverse?

Definition (Moore-Penrose pseudoinverse of a matrix)
Given A ∈ Rm×n, A† is its pseudoinverse if

AA†A = A

A†AA†
= A†

(AA†)
H
= AA†

(A†A)H = A†A

more in http://www.math.ucla.edu/~laub/33a.2.12s/mppseudoinverse.pdf
- linear least squares 7

• as hinted in the previous exercise, that inverse may not exist – then we can use the Moore-
Penrose pseudoinverse

• this is defined in this way
• and there are a lot of things that may be said about it
• unfortunately we cannot discuss about it too much, so: for the interested student, please

check here

notes

Using the pseudoinverse when necessary

y = Φ(u)θ + e, θ ∈ Rn θ̂LS = arg min
θ∈Rn
∥y −Φ(u)θ∥2

Ô⇒ θ̂LS = Φ(u)†y

strong connections with singular values decompositions!

- linear least squares 8

• we can always say that the solution is this one, independently of the existence or not of the
inverse in the normal equations

• note that the Moore-Penrose pseudoinverse is very well connected with SVDs
• this means that there are some connections between LS and SVDs that one should explore

to fully understand LS

notes

http://www.math.ucla.edu/~laub/33a.2.12s/mppseudoinverse.pdf


Question 7

We can always solve the normal equations for every unconstrained separable LS
problem

Potential answers:

I: (correct) true
II: (wrong) false

III: (wrong) I do not know
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• see the associated solution(s), if compiled with that ones :)

notes

Question 8

We can always solve the normal equations for every separable LS problem, even for
constrained ones

Potential answers:

I: (wrong) true
II: (correct) false

III: (wrong) I do not know
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• see the associated solution(s), if compiled with that ones :)

notes



LS for constrained separable problems /Ô⇒ normal equations

y = Φ(u)θ + e, θ ∈ Θ θ̂LS = arg min
θ∈Θ
∥y −Φ(u)θ∥2

Ideally, looking for θ∗ s.t. Φ(u)θ∗ − y = 0, but it may happen that θ∗ ∉ Θ!

Example = fitting a convex quadratic here:

φ(ut)

yt

- linear least squares 11

• note that the solution through the normal equations is something that is guaranteed to be
the actual solution only whenever we have unconstrained problems!

• the intuition is this one: through the normal equations, one gets a point. But that point may
not be in the hypothesis space

• if that happens, one has to solve a constrained optimization problem
• thus for constrained separable problems one may do as follows:

• compute a potential solution through the normal equations
• check whether this potential solution is within Θ
• if so, then ok, the problem is solved
• if not, one has to solve the constrained optimization problem

notes

Summarizing

Describe the concept of least squares in geometrical perspectives

Derive and use the normal equations for
solving separable least squares problems

• visualize the dataset in an opportune multidimensional plot
• if we have separability, we can use linear algebra to arrive at XT X θ̂ = Xy

- linear least squares 12

• you should now be able to do this, following the pseudo-algorithm in the itemized list

notes



Most important python code for this sub-module

- linear least squares 1

•

notes

Illustrative example
https:
//scikit-learn.org/stable/auto_examples/linear_model/plot_ols.html

- linear least squares 2

• this example walks the reader along how to code a LS with python

notes

https://scikit-learn.org/stable/auto_examples/linear_model/plot_ols.html
https://scikit-learn.org/stable/auto_examples/linear_model/plot_ols.html


Self-assessment material
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•

notes

Question 9

In the geometric interpretation of least squares, what does the vector y represent?

Potential answers:

I: (wrong) The model parameters to be estimated
II: (correct) The fixed vector of measured output values

III: (wrong) The manifold of all possible model predictions
IV: (wrong) The noise affecting the measurements
V: (wrong) I do not know

Solution 1:

In the geometric interpretation, y is the fixed vector of measured output values
from the dataset. The least squares problem aims to find the point on the model
manifold (determined by Φ(u)θ) that is closest to y . - linear least squares 2

• see the associated solution(s), if compiled with that ones :)

notes



Question 10

What is the fundamental assumption required to derive the normal equations for least
squares?

Potential answers:

I: (wrong) The noise must be Gaussian distributed
II: (wrong) The model must be nonlinear in parameters

III: (correct) The problem must be linear in parameters (separable)
IV: (wrong) The hypothesis space must be constrained
V: (wrong) I do not know

Solution 1:

The normal equations ΦT Φθ = ΦT y can only be derived for problems that are
linear in their parameters (separable problems). This allows the analytical solution
through matrix operations.

- linear least squares 3

• see the associated solution(s), if compiled with that ones :)

notes

Question 11

When is the Moore-Penrose pseudoinverse required in least squares problems?

Potential answers:

I: (wrong) When dealing with nonlinear models
II: (wrong) When the measurements are noisy

III: (correct) When ΦT Φ is not invertible
IV: (wrong) When the hypothesis space is constrained
V: (wrong) I do not know

Solution 1:

The pseudoinverse is needed when ΦT Φ is singular (not invertible), which occurs
when the columns of Φ are linearly dependent. It provides a generalized inverse
that gives the minimum-norm solution. - linear least squares 4

• see the associated solution(s), if compiled with that ones :)

notes



Question 12

What guarantees the existence of a unique least squares solution?

Potential answers:

I: (wrong) Having more parameters than measurements
II: (correct) Φ having full column rank and unconstrained parameters

III: (wrong) The hypothesis space being compact
IV: (wrong) The noise being normally distributed
V: (wrong) I do not know

Solution 1:

A unique solution exists when Φ has full column rank (making ΦT Φ invertible)
and the parameters are unconstrained. This ensures the normal equations have
exactly one solution. - linear least squares 5

• see the associated solution(s), if compiled with that ones :)

notes

Question 13

What is a key difference between constrained and unconstrained least squares
problems?

Potential answers:

I: (wrong) Constrained problems always have unique solutions
II: (correct) The normal equations may give solutions outside the constraint

set
III: (wrong) Only unconstrained problems can use the pseudoinverse
IV: (wrong) Constrained problems require nonlinear optimization
V: (wrong) I do not know

Solution 1:

For constrained problems, the solution from normal equations may violate the
constraints, requiring additional optimization techniques. Unconstrained prob-
lems can be solved directly via normal equations when ΦT Φ is invertible.

- linear least squares 6

• see the associated solution(s), if compiled with that ones :)

notes



Recap of sub-module “linear least squares”
• Least squares aims to minimize the squared residuals between model predictions

and observed data
• The geometric interpretation views system identification as finding the closest

point on a model manifold to measurement vectors
• Normal equations provide an analytical solution for unconstrained linear least

squares problems through ΦT Φθ = ΦT y
• The pseudoinverse generalizes solutions for rank-deficient systems and connects

with singular value decomposition
• Existence and uniqueness of LS solutions depend on hypothesis space topology

and model structure identifiability
• Constrained LS problems require different approaches than normal equations when

parameters must satisfy domain restrictions

- linear least squares 7

• the most important remarks from this sub-module are these ones

notes
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