Table of Contents I

- Introduction to System Identification
 - Most important python code for this sub-module
 - Self-assessment material

 this is the table of contents of this document; each section corresponds to a specific part of the course

notes

- 1

Contents map

developed content units	taxonomy levels
system identification	u1, e1
parameter estimation	u1, e1
least squares	u1, e1

prerequisite content units	taxonomy levels
impulse response	u1, e1

- Introduction to System Identification 2

Main ILO of sub-module "Introduction to System Identification"

describe the underlying concepts behind system identification

describe the role of system identification in model-based control

What does "identifying a system" mean?

in a nutshell: to build mathematical models of a dynamic system from its input-output data

Typical ingredients:

- measurements (inputs and outputs)
- model structure (e.g., impulse response).

- Introduction to System Identification 4

Identification in this course

focus on estimating the coefficients that define the impulse response of causal FIR discrete-time LTI systems (likely less than 1% of what sysid encompasses)

More precisely

available dataset:
$$\mathcal{D} = \{y[k], u[k]\}_{k \in \mathcal{K}}$$

assumed model:
$$y[k] = \sum_{i=0}^{n} h[i]u[k-i] + e[k]$$

with

- *n* to be estimated
- *h*[0], *h*[1], ..., *h*[*n*] to be estimated
- e[k] noise / modeling error with potentially unknown statistics

- Introduction to System Identification 6

Does identification matter for control?

- ... how can you do model-based control without a model? Caveats, though:
 - end goal of this course = MPC
 - bad model \implies bad model based controller
 - bad dataset ⇒ bad model (filtering may help!)

Next modules

- least squares
- regularization

- Introduction to System Identification 8

Summarizing

describe the underlying concepts behind system identification

describe the role of system identification in model-based control

- need a model structure
- need input-output data
- need an estimation algorithm

Most important python code for this sub-module

- Introduction to System Identification 1

A very widely used library

https://scikit-learn.org/stable/

Self-assessment material

- Introduction to System Identification 1

Question 1

Why do we need system identification before applying model-based control techniques like MPC?

Potential answers:	
I: (wrong) II: (wrong) III: (correct) IV: (wrong)	To make the system faster To reduce noise in sensors To estimate a model of the system from data I do not know

Solution 1:

MPC and other model-based controllers require a mathematical model of the system. If we don't have it from physics, we estimate it from data.

- Introduction to System Identification 2

notes

Question 2

What is the primary purpose of system identification in control engineering?

Potential answers:

l: (wrong) ll: (correct) data	To increase the processing speed of the control system To construct a mathematical model of a dynamic system using
III: (wrong)	To eliminate measurement noise entirely from sensors
IV: (wrong)	To design the controller directly without requiring a model
V: (wrong)	I do not know

Solution 1:

System identification aims to build mathematical models from input-output data, which are essential for model-based control techniques. Noise reduction sand Identification 3 controller design are separate processes.

Question 3

Why is input-output data critical in system identification?

Potential answers:	
I: (wrong) II: (correct) behavior	To determine the physical dimensions of system components To estimate model parameters that best explain the observed
III: (wrong) IV: (wrong) V: (wrong)	To validate the controller's performance in real-time To replace the need for mathematical modeling entirely I do not know

Solution 1:

Input-output data enables parameter estimation by linking the model's predictions to actual measurements. Physical dimensions and controller- validations, atta Identification 4 separate concerns.

notes

Question 4

What is a major risk of using a poorly identified model in Model Predictive Control (MPC)?

Potential answers:	
l: (wrong) ll: (correct)	The system's hardware may suffer physical damage The controller may perform inadequately due to inaccurate
predictions	
III: (wrong)	Increased computational load during controller operation
IV: (wrong)	The need for more frequent sensor calibrations
V: (wrong)	l do not know

Solution 1:

MPC relies on model predictions for control decisions. A poor model deads, step Identification 5 erroneous predictions and degraded performance. Physical damage or sensor issues are not direct consequences.

Question 5

Which three elements are fundamentally required for system identification?

Potential answers:	
l: (wrong)	Actuators, sensors, and a power supply
III: (<u>correct</u>)	Input-output data, estimation algorithm, and if available, model
structure IV: (wrong)	Noise filters, feedback loops, and setpoints
V: (wrong)	I do not know

Solution 1:

System identification requires a model structure to define the mathematical form, input-output data to fit parameters, and an estimation algorithmtraces, to least Identification 6 squares) to compute optimal values. Hardware components and controller design are separate.

notes

Recap of sub-module "Introduction to System Identification"

- Model-based control requires accurate models
- System identification builds models from data
- There are several tools to estimate model parameters, in this course we only scratch the surface

