Table of Contents I

- Filtering Lab: Noise Reduction and Outlier Rejection
 - Most important python code for this sub-module
 - Self-assessment material

- 1

Filtering Lab: Noise Reduction and Outlier Rejection

Contents map

developed content units	taxonomy levels
Filter design and performance evaluation	u1, e1
Practical trade-offs (noise vs. outliers)	u2, e2
Python implementation of filters	u3, e3
proroquisito contont units	taxonomy lovals

prerequisite content units	Laxonomy levels
Sinusoidal fidelity, LTI systems	u1, e1
Basic Python/NumPy/Matplotlib	u2, e2

- Filtering Lab: Noise Reduction and Outlier Rejection 2

Main ILO of sub-module

"Filtering Lab: Noise Reduction and Outlier Rejection"

Choose the right filter for a given signal (noise vs. outliers)

Quantify filter performance (e.g., frequency distortion, outlier rejection)

Understand practical implications of impulse/frequency responses

notes
 Focus on decision-making, not just implementation

Todays Plan

- Task 1: Tweak Butterworth parameters (order, cutoff) and observe effects
- Task 2: Compare frequency content (original vs. filtered)
- Task 3: Visualize impulse/frequency responses of LTI filters
- Task 4: Smooth signals using moving average, median, or Savitzky-Golay

- Filtering Lab: Noise Reduction and Outlier Rejection 4

Signals Youll Work With

Real-world:

- EMG (biceps movement)
- Heavily quantized time series

Synthetic:

- Sine/square waves + noise
- Same + outliers (spikes)

Goal: Match the filter to the problem!

Lab time!

FilteringLab.ipynb

- Filtering Lab: Noise Reduction and Outlier Rejection 6

Summarizing

Choose the right filter for a given signal (noise vs. outliers)

Quantify filter performance (e.g., frequency distortion, outlier rejection)

Understand practical implications of impulse/frequency responses

Main intuitions:

- Butterworth: Smooth noise, but distorts edges
- Median: Crush outliers, preserve sharp transitions
- **Savitzky-Golay**: Smooth while preserving peaks

notes

- Filtering Lab: Noise Reduction and Outlier Rejection 1

- Filtering Lab: Noise Reduction and Outlier Rejection 2

Key Python Functions

Butterworth Filter

from scipy.signal import butter, filtfilt
b, a = butter(N, cutoff, btype='low')
filtered_signal = filtfilt(b, a, signal)

Savitzky-Golay

from scipy.signal import savgol_filter
filtered_signal = savgol_filter(signal, window_length, polyorder)

Most important python code for this sub-module

Self-assessment material

- Filtering Lab: Noise Reduction and Outlier Rejection 1

Question 1

Which filter is **least** suitable for removing sparse, large-amplitude outliers?

Potential answers:		
I: (wrong) II: (wrong) III: (correct) IV: (wrong)	Median filter Butterworth filter Moving average Savitzky-Golay filter	
Solution 1:		

Butterworth filters smooth noise but are linearoutliers "pull" the output. Median filters excel at outlier rejection.

Recap of sub-module

"Filtering Lab: Noise Reduction and Outlier Rejection"

- Filter choice depends on signal features (noise band, outliers, quantization).
- Always check frequency/impulse responses for unintended effects.
- Non-linear filters (median) handle outliers; linear filters (Butterworth) handle noise.

notes
- Kan idaa. Thanaa na "haat" fikanaalii tha ninkt taal fan tha iah
• Key idea: There's no best interonly the right tool for the job.