
Table of Contents I
state space from ARMA (and viceversa)

From state space to ARMA
From ARMA to SS
Most important python code for this sub-module
Self-assessment material

- 1

• this is the table of contents of this document; each section corresponds to a specific part of
the course

notes

state space from ARMA (and viceversa)

- state space from ARMA (and viceversa) 1

•

notes

Contents map

developed content units taxonomy levels
realization u1, e1

prerequisite content units taxonomy levels
ARMA model u1, e1
state space model model u1, e1
matrix inversion u1, e1
Zeta transforms u1, e1

- state space from ARMA (and viceversa) 2

•

notes

Main ILO of sub-module “state space from ARMA (and viceversa)”

Determine the state space structure of an dis-
crete time LTI system starting from an ARMA RR

- state space from ARMA (and viceversa) 3

• by the end of this module you shall be able to do this

notes

ARMA models

y [n] = an−1y [n−1] + . . . + a0y + bmu[m] + . . . + b0u

- state space from ARMA (and viceversa) 4

• the an−1y [n−1]
+ . . . + a0y part is called Auto-Regressive

• the bmu[m] + . . . + b0u part is called Moving-Average
• these names make very much sense in discrete time systems of the type y[k + n] = an−1y[k +

n−1]+ . . .+ a0y[k]+bmu[k +m]+ . . .+b0u[k] and k a discrete time index. Here we see that
the a’s correspond to an autoregression, and the b’s to the coefficients of a moving average.
In any case we use ARMA for both continuous and discrete dynamics of these types

notes

State space representations - Notation

x+1 = f1 (x1, . . . , xn, u1, . . . , um)
...

x+n = fn (x1, . . . , xn, u1, . . . , um)

y1 = g1 (x1, . . . , xn, u1, . . . , um)
...

yp = gp (x1, . . . , xn, u1, . . . , um)

x+ = f (x, u)
y = g (x, u)

• f = state transition map
• g = output map

- state space from ARMA (and viceversa) 5

• notation wide, remember that state space means first order RRs
• they will thus look like these ones, in general
• we can also compress the notation in this way
• remember that bold non-capital fonts mean vectors in this course
• and we give to the various things these names

notes

This module:

ARMA models state space models

But why do we study this?
because from physical laws we get ARMA,
but with state space we get more explainable models

- state space from ARMA (and viceversa) 6

• we will learn how to do two simple operations
• we will only scratch the surface though, there is a lot of material to cover here and you will

do it much better in other modules / courses
• and often one does the “ARMA to SS” operation

notes

From state space to ARMA

- state space from ARMA (and viceversa) 1

•

notes

SS to ARMA
Tacit assumption: x[0] = 0

{ x+ = Ax +Bu
y = Cx +Du

→ Z ({ x+ = Ax +Bu
y = Cx +Du

)

→ { zX = AX +BU
Y = CX +DU

→ { (zI −A)X = BU
Y = CX +DU

→ { X = (zI −A)−1BU (∗)
Y = CX +DU

⇒ Y = (C(zI −A)−1B +D)U

⇒ Y (z) = polynomial in z
polynomial in z

U(z)
- state space from ARMA (and viceversa) 2

• This slide shows the step-by-step derivation of the transfer function from the state-space
representation using Zeta transforms.

• the assumption x[0] = 0 simplifies the Zeta transform of the derivative.
• the key step where X = (zI −A)−1BU is derived is the foundation for the transfer function.
• the final result, Y (z) = polynomial in z

polynomial in z
U(z), is the ARMA representation of the system.

• For computations, I recommend using tools like simpy for symbolic algebra, but you should
be able to handle 2x2 systems by hand.

notes

A note on the last formula

Y (z) = polynomial in z
polynomial in z

U(z) ↦ ARMA:

Y (z) = z + 3
2z3 + 3z

U(z) ↦ 2y+++ + 3y+ = u+ + 3u

- state space from ARMA (and viceversa) 3

• This slide connects the transfer function to the ARMA model in the time domain.
• the numerator and denominator polynomials in z directly translate to differential equations

in the time domain.
• the example shows how the transfer function Y (z) = z + 3

2z3 + 3s
U(z) corresponds to the dif-

ferential equation 2y+++ + 3y+ = u̇ + 3u.
• this is a key step in understanding the relationship between the Zeta domain and time domain.

notes

A note on the second to last formula

Y = (C(zI −A)−1B +D)U

DISCLAIMER: in this course we consider SISO systems, thus C and B = vectors, and
D = scalar (if present)

- state space from ARMA (and viceversa) 4

• that this course focuses on Single Input Single Output (SISO) systems, which simplifies the
matrices C , B, and D.

• C and B are vectors, and D is a scalar (often zero in many systems).
• this simplification is important for understanding the structure of the transfer function.
• MIMO (Multiple Input Multiple Output) systems in other courses!

notes

Numerical Example: 2 × 2 State-Space to ARMA

A = [1 2
3 4
] , B = [1

0
] , C = [1 0] , D = [0]

- state space from ARMA (and viceversa) 5

• this numerical example is used to illustrate the conversion from state-space to ARMA.
• this is a 2x2 system, which is manageable by hand and helps students understand the process.
• the matrices A, B, C , and D are chosen for simplicity, but the method is general.

notes

Numerical Example: 2 × 2 State-Space to ARMA
Step 1: State-Space Equations

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

x+1 = x1 + 2x2 + u
x+2 = 3x1 + 4x2

y = x1

- state space from ARMA (and viceversa) 6

• the state-space equations explicitly using the given matrices.
• x+1 and x+2 are linear combinations of the states and the input u.
• the output y is simply the first state variable x1.

notes

Numerical Example: 2 × 2 State-Space to ARMA
Step 2: Zeta Transform

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

zX1(z) = X1(z) + 2X2(z) +U(z)
zX2(z) = 3X1(z) + 4X2(z)
Y (z) = X1(z)

- state space from ARMA (and viceversa) 7

• Apply the Zeta transform to the state-space equations, assuming zero initial conditions.
• the Zeta transform converts differential equations into algebraic equations in z.
• Y (z) = X1(z), which connects the output directly to the first state variable.

notes

Numerical Example: 2 × 2 State-Space to ARMA
Step 3: Rearrange in Matrix Form

⎧⎪⎪⎨⎪⎪⎩

(zI −A)X(z) = BU(z)
Y (z) = CX(z) +DU(z)

implies
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎡⎢⎢⎢⎢⎣

z − 1 −2
−3 z − 4

⎤⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎣

X1(z)
X2(z)

⎤⎥⎥⎥⎥⎦
=
⎡⎢⎢⎢⎢⎣

1
0

⎤⎥⎥⎥⎥⎦
U(z)

Y (z) = [1 0]
⎡⎢⎢⎢⎢⎣

X1(z)
X2(z)

⎤⎥⎥⎥⎥⎦

- state space from ARMA (and viceversa) 8

• Rearrange the Zeta-transformed equations into matrix form.
• the output equation Y (z) = CX(z) remains simple due to the choice of C .

notes

Numerical Example: 2 × 2 State-Space to ARMA
Step 4: Solve for X(z)

X(z) = (zI −A)−1BU(z)

(zI −A) = [z − 1 −2
−3 z − 4

]

(zI −A)−1 = 1
(z − 1)(z − 4) − (−2)(−3)

[z − 4 2
3 z − 1

]

det(zI −A) = (z − 1)(z − 4) − 6 = z2 − 5z − 2

(zI −A)−1 = 1
z2 − 5z − 2

[z − 4 2
3 z − 1

]

- state space from ARMA (and viceversa) 9

• Solve for X(z) by computing (zI −A)−1.
• the determinant det(zI −A), which appears in the denominator of the transfer function, is

key.
• the step-by-step computation of the inverse matrix is assumed as a given skill.

notes

Numerical Example: 2 × 2 State-Space to ARMA
Step 5: Multiply by B

Now, multiply by B:

X(z) = 1
z2 − 5z − 2

[z − 4 2
3 z − 1

] [1
0
]U(z) = 1

z2 − 5z − 2
[z − 4

3
]U(z)

- state space from ARMA (and viceversa) 10

• Multiply (zI −A)−1 by B to obtain X(z).
• this step simplifies the expression for X(z).
• X1(z) and X2(z) are now expressed in terms of U(z).

notes

Numerical Example: 2 × 2 State-Space to ARMA
Step 6: Solve for Y (z)

Substitute X(z) into the output equation:

Y (z) = CX(z) +DU(z) = [1 0] [X1(z)
X2(z)

] = X1(z)

Thus:
Y (z) = z − 4

z2 − 5z − 2
U(z)

- state space from ARMA (and viceversa) 11

• Substitute X(z) into the output equation to find Y (z).
• Y (z) is directly proportional to X1(z).

notes

Numerical Example: 2 × 2 State-Space to ARMA
Step 7: Final Result

Transfer function H(z):

H(z) = Y (z)
U(z)

= z − 4
z2 − 5z − 2

and from this we get the ARMA representation of the system as before

- state space from ARMA (and viceversa) 12

• this is the ARMA representation of the system.

notes

From ARMA to SS

- state space from ARMA (and viceversa) 1

•

notes

Starting point (blending Zeta notation with time notation)

y[k] = b(z)
a(z)

u[k] = b1zn−1 + . . . + bn
zn + a1zn−1 + . . . + an

u[k]

- state space from ARMA (and viceversa) 2

• our goal is now that of converting an ARMA model to a state-space representation.
• the starting point is the transfer function in the Zeta domain.
• the numerator and denominator polynomials define the ARMA model.

notes

Building block = the time-delay (block)

y z−1 y−

- state space from ARMA (and viceversa) 3

• the time delay block is a fundamental building block for state-space representations.
• this block is key to constructing state variables.

notes

How do we use delays?

y+++ + a2y++ + a1y+ + a0y = b0u
↓

y+++ = −a2y++ − a1y+ − a0y + b0u

u b0 Σ z−1 z−1 z−1
y+++ y++ y+ y

−a2
−a1

−a0

instrumental for later: x [3] = −a2x [2] − a1x [1] − a0x [0] + b0u

and the state vector is [x [2], x [1], x [0]]
- state space from ARMA (and viceversa) 4

• This shows how to rearrange a higher-order differential equation into a form suitable for state-
space representation.

• the highest derivative is expressed as a function of lower derivatives and the input.
• this step is crucial for defining the state variables.

notes

Towards SS with a useful trick

y[k] = b(z)
a(z)

u[k] = b1zn−1 + . . . + bn
zn + a1zn−1 + . . . + an

u[k]→

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

x [0] = 1
a(z)

u

y = b(z)x [0]

- state space from ARMA (and viceversa) 5

• We then use the trick of defining an intermediate variable xn[k] to simplify the conversion
process.

• xn[k] is the output of the denominator dynamics driven by the input u[k].
• this trick separates the AR (denominator) and MA (numerator) parts of the system.

notes

This is an AR model on x [0]

x [0] = 1
a(z)

u Ô⇒ a(z)x [0] = u

implies

u + z−1 z−1 . . . z−1 z−1 x [0]x [n] x [n−1] x [2] x [1]

+

+
...

+

+

+

an

an−1

a2

a1

a0

- state space from ARMA (and viceversa) 6

• We now use a block diagram to illustrate the relationship between the state variables.
• the state variables are interconnected through integrators.
• this structure is the foundation of the state-space representation.

notes

Completing the picture (a MA from xn to y)

y[k] = bnx [n][k] + . . . + b0x [0][k]

u + z−1 z−1 . . . z−1 z−1 b0 + yx [n] x [n−1] x [2] x [1] x [0]

+
+
⋅

+
+
+

an

an−1

a2

a1

a0

+

+
⋅

+

+bn

bn−1

b2

b1

- state space from ARMA (and viceversa) 7

• the output y[k] is constructed as a linear combination of the state variables.
• the coefficients of the linear combination are the numerator coefficients b1, b2, . . . , bn.
• this step completes the state-space representation.

notes

From concepts to formulas

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

y[k] = bnx [n][k] + . . . + b0x [0][k]

x [n]+[k] = −anx [n][k] − . . . − a0x [0][k] + u[k]

x [i]+[k] = x [i][k]

→ { x+ = Ax +Bu
y = Cx +Du

x+ ∶=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x [n]+

x [n−1]+

x [n−2]+

...

x [0]+

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−an −an−1 −a0
1 0 0
0 1 0 . . . 0

. . .
. . .

. . .

0 1 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x [n]

x [n−1]

x [n−2]

...

x [0]

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
0
0
...

0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

u

- state space from ARMA (and viceversa) 8

• This presents the final state-space equations in matrix form.
• the structure of the A matrix is then in control canonical form.
• the B vector has a single non-zero entry, corresponding to the input u[k].

notes

And y?

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

y[k] = bnx [n][k] + . . . + b0x [0][k]

x [n]+[k] = −anx [n][k] − . . . − a0x [0][k] + u[k]

x [i]+[k] = x [i][k]

→ { x+ = Ax +Bu
y = Cx +Du

y = [bn bn−1 bn−2 . . . b0]

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x [n]

x [n−1]

x [n−2]

...

x [0]

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

- state space from ARMA (and viceversa) 9

• The output equation is constructed from the state variables.
• the C matrix contains the numerator coefficients b0, b1, . . . , bn.
• this step completes the state-space representation.

notes

From ARMA to state space (in Control Canonical Form)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x [n]+

x [n−1]+

x [n−2]+

...

x [0]+

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−an −an−1 −a0
1 0 0
0 1 0 . . . 0

. . .
. . .

. . .

0 1 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x [n]

x [n−1]

x [n−2]

...

x [0]

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
0
0
...

0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

u

y = [bn bn−1 bn−2 . . . b0]

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x [n]

x [n−1]

x [n−2]

...

x [0]

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

- state space from ARMA (and viceversa) 10

• The state-space representation in control canonical form.
• the structure of the A matrix becomes upper Hessenberg with a diagonal of ones.
• this form is particularly useful for control design and analysis, you will see it very often.

notes

Matlab / Python implementation

[A, B, C, D] = tf2ss([bn .. b0], [1 an .. a0])

- state space from ARMA (and viceversa) 11

• the MATLAB/Python function tf2ss is used for converting transfer functions to state-space
form.

• the input arguments are the numerator and denominator coefficients of the transfer function.
• this function automates the process of deriving the state-space matrices.
• you can use this function to verify your hand calculations only for small examples, at work

don’t do computations by hand

notes

Summarizing

Determine the state space structure of an dis-
crete time LTI system starting from an ARMA RR

• there are some formulas, that you may simply know by heart, or that you may
want to understand

• for understanding there is the need to get how the transformations work, and
what is what

• likely the most important point is that to go from ARMA to SS the (likely) most
simple strategy is to build the states as a chain of delays, and ladder on top of that

- state space from ARMA (and viceversa) 12

• you should now be able to do this, following the pseudo-algorithm in the itemized list

notes

Most important python code for this sub-module

- state space from ARMA (and viceversa) 1

•

notes

These functions have also their opposite, i.e., tf2ss
• https://docs.scipy.org/doc/scipy/reference/generated/scipy.

signal.ss2tf.html
• https://python-control.readthedocs.io/en/latest/generated/

control.ss2tf.html

- state space from ARMA (and viceversa) 2

• in the references you will see much more information than what is given in this module

notes

Self-assessment material

- state space from ARMA (and viceversa) 1

•

notes

https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.ss2tf.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.ss2tf.html
https://python-control.readthedocs.io/en/latest/generated/control.ss2tf.html
https://python-control.readthedocs.io/en/latest/generated/control.ss2tf.html

Question 1

Given the discrete-time ARMA model:

y+++ + a2y++ + a1y+ + a0y = b0u,

what is the correct state-space representation in control canonical form?

Potential answers:

I: (wrong)
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x+1 = −a2x1 − a1x2 − a0x3 + b0u
x+2 = x1

x+3 = x2

y = x3

II: (correct)
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x+1 = −a2x1 − a1x2 − a0x3 + u
x+2 = x1

x+3 = x2

y = b0x3

III: (wrong)
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x+1 = x2

x+2 = x3

x+3 = −a0x1 − a1x2 − a2x3 + u
y = b0x1

IV: (wrong)
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x+1 = x2 + b0u
x+2 = x3

x+3 = −a0x1 − a1x2 − a2x3

y = x1

V: (wrong) I do not know

Solution 1:

The correct representation places the AR coefficients in the first state equation
and uses b0 as the output weight. The input u directly affects only x+1 , while
subsequent states are delayed versions. The output combines states with numer-
ator coefficients.

- state space from ARMA (and viceversa) 2

• see the associated solution(s), if compiled with that ones :)

notes

Question 2

For the state-space system:
⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

x+1 = −3x1 + 2x2 + u
x+2 = x1

y = 4x1 + x2

,

what is the equivalent ARMA model?

Potential answers:

I: (wrong) y++ + 3y+ − 2y = 4u+ + u
II: (correct) y++ + 3y+ − 2y = u+ + 4u

III: (wrong) y++ − 3y+ + 2y = u+ + 4u
IV: (wrong) y++ + 3y+ + 2y = 4u+ + u
V: (wrong) I do not know

Solution 1:

The ARMA model is derived from (z2+3z−2)Y (z) = (z+4)U(z), corresponding
to y++ + 3y+ − 2y = u+ + 4u. The coefficients come from det(zI −A) and C(zI −
A)−1B +D.

- state space from ARMA (and viceversa) 3

• see the associated solution(s), if compiled with that ones :)

notes

Question 3

In discrete-time state-space representations, the delay operator z−1 primarily:

Potential answers:

I: (wrong) Approximates continuous-time integration
II: (correct) Implements the time-shift operation x[k]→ x[k − 1]

III: (wrong) Adds stochastic noise to the system
IV: (wrong) Reduces computational complexity
V: (wrong) I do not know

Solution 1:

The z−1 operator represents a unit delay in discrete-time systems, equivalent to
the time-shift operation. This is fundamental for implementing state updates in
difference equations. - state space from ARMA (and viceversa) 4

• see the associated solution(s), if compiled with that ones :)

notes

Question 4

The control canonical form’s state matrix A always:

Potential answers:

I: (wrong) Is diagonal with poles on the diagonal
II: (correct) Has AR coefficients in its first row and shifted identity below

III: (wrong) Makes the B matrix identical to C⊺

IV: (wrong) Minimizes the number of nonzero elements
V: (wrong) I do not know

Solution 1:

Control canonical form structures A with −an to −a0 in the first row and shifted
identity submatrix, ensuring direct mapping from ARMA coefficients. This form
guarantees controllability. - state space from ARMA (and viceversa) 5

• see the associated solution(s), if compiled with that ones :)

notes

Question 5

When converting state-space to ARMA via Z-transform, the operator (zI −A)−1:

Potential answers:

I: (wrong) Directly gives the system’s impulse response
II: (correct) Is the resolvent matrix needed to solve for X(z)

III: (wrong) Always results in a diagonalizable matrix
IV: (wrong) Can be omitted if D ≠ 0
V: (wrong) I do not know

Solution 1:

The resolvent matrix (zI −A)−1 is essential for solving X(z) = (zI −A)−1BU(z),
which is then used to derive the transfer function H(z) = C(zI −A)−1B +D.

- state space from ARMA (and viceversa) 6

• see the associated solution(s), if compiled with that ones :)

notes

Recap of sub-module “state space from ARMA (and viceversa)”
• one can go from ARMA to state space and viceversa
• we did not see this, but watch out that the two representations are not equivalent:

there are systems that one can represent with state space and not with ARMA,
and viceversa

• typically state space is more interpretable, and tends to be the structure used
when doing model predictive control

- state space from ARMA (and viceversa) 7

• the most important remarks from this sub-module are these ones

notes

	state space from ARMA (and viceversa)

