Table of Contents I

- state space from ARMA (and viceversa)
 - From state space to ARMA
 - From ARMA to SS
 - Most important python code for this sub-module
 - Self-assessment material

 this is the table of contents of this document; each section corresponds to a specific part of the course

notes

- 1

Contents map

developed content units	taxonomy levels
realization	u1, e1
prerequisite content units	taxonomy levels
ARMA model	u1, e1
state space model model	u1, e1
matrix inversion	u1, e1
Zeta transforms	u1, e1

- state space from ARMA (and viceversa) 2

Main ILO of sub-module <u>"state space from ARMA (and viceversa)"</u>

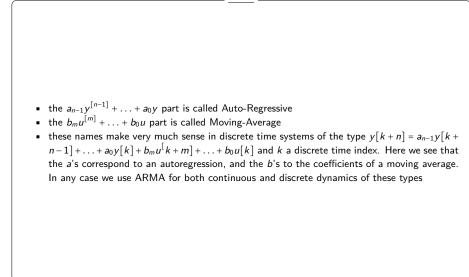
Determine the state space structure of an discrete time LTI system starting from an ARMA RR

notes	
)
 by the end of this module you shall be able to do this 	

_ notes

ARMA models

 $y^{[n]} = a_{n-1}y^{[n-1]} + \ldots + a_0y + b_mu^{[m]} + \ldots + b_0u$



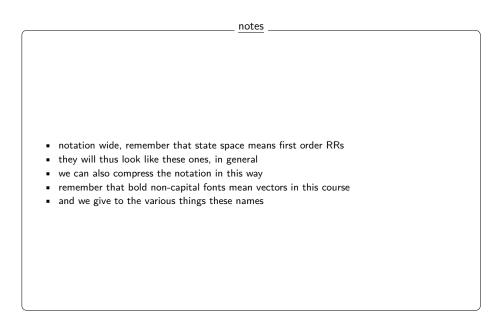
- state space from ARMA (and viceversa) 4

State space representations - Notation

$$\begin{aligned} x_1^+ &= f_1 \left(x_1, \dots, x_n, u_1, \dots, u_m \right) \\ \vdots \\ x_n^+ &= f_n \left(x_1, \dots, x_n, u_1, \dots, u_m \right) \\ y_1 &= g_1 \left(x_1, \dots, x_n, u_1, \dots, u_m \right) \\ \vdots \\ y_p &= g_p \left(x_1, \dots, x_n, u_1, \dots, u_m \right) \end{aligned}$$

- **f** = state transition map
- **g** = output map

- state space from ARMA (and viceversa) 5



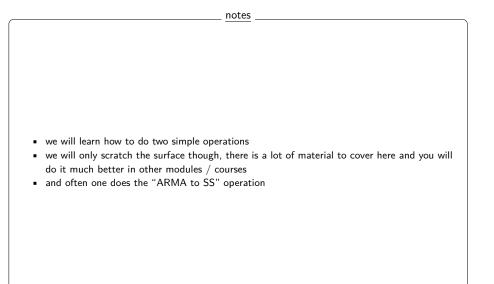
_ notes

This module:

ARMA models state space models

But why do we study this?

because from physical laws we get ARMA, but with state space we get more explainable models



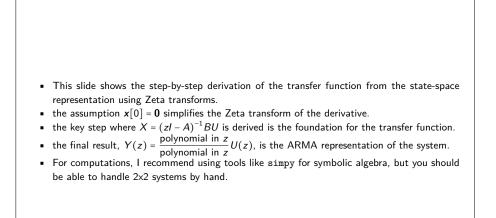
notes

- state space from ARMA (and viceversa) 6

SS to ARMA

Tacit assumption: x[0] = 0

$$\begin{aligned} \mathbf{x}^{+} &= A\mathbf{x} + Bu \\ \mathbf{y} &= C\mathbf{x} + Du \end{aligned} \rightarrow \qquad \mathcal{Z}\left(\begin{cases} \mathbf{x}^{+} &= A\mathbf{x} + Bu \\ \mathbf{y} &= C\mathbf{x} + Du \end{cases} \right) \\ \rightarrow \qquad \begin{cases} zX &= AX + BU \\ Y &= CX + DU \end{cases} \\ \rightarrow \qquad \begin{cases} (zI - A)X &= BU \\ Y &= CX + DU \end{cases} \\ \rightarrow \qquad \begin{cases} (zI - A)X &= BU \\ Y &= CX + DU \end{cases} \\ \rightarrow \qquad \begin{cases} X &= (zI - A)^{-1}BU \quad (*) \\ Y &= CX + DU \end{cases} \\ \rightarrow \qquad \begin{cases} Y &= (C(zI - A)^{-1}B + D)U \\ \Rightarrow \qquad Y(z) = \frac{\text{polynomial in } z}{\text{polynomial in } z} U(z) \\ \text{- state space from ARMA (and viceversa) 2} \end{aligned}$$



A note on the last formula

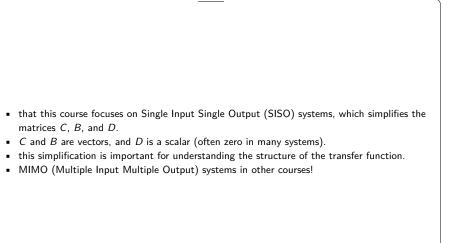
$$Y(z) = \frac{\text{polynomial in } z}{\text{polynomial in } z} U(z) \quad \mapsto \quad \text{ARMA:}$$
$$Y(z) = \frac{z+3}{2z^3+3z} U(z) \quad \mapsto \quad 2y^{+++} + 3y^+ = u^+ + 3u$$

__ notes

A note on the second to last formula

$$Y = \left(C(zI - A)^{-1}B + D\right)U$$

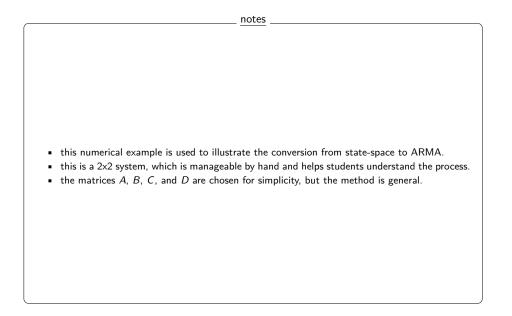
DISCLAIMER: in this course we consider SISO systems, thus C and B = vectors, and D = scalar (if present)



- state space from ARMA (and viceversa) 4

Numerical Example: 2 × 2 State-Space to ARMA

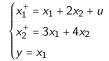
$$A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}, \quad B = \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \quad C = \begin{bmatrix} 1 & 0 \end{bmatrix}, \quad D = \begin{bmatrix} 0 \end{bmatrix}$$

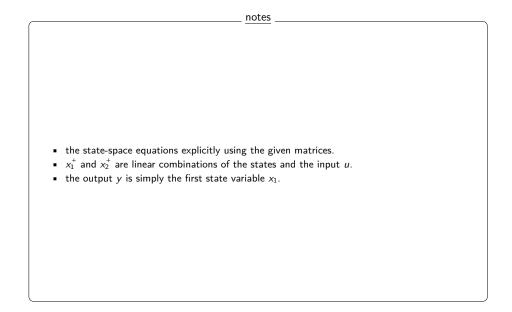


- state space from ARMA (and viceversa) 5

notes

Numerical Example: 2 × 2 State-Space to ARMA Step 1: State-Space Equations

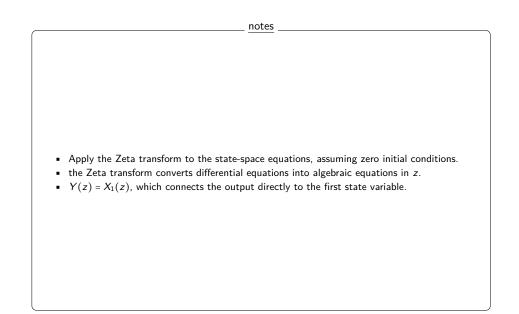




- state space from ARMA (and viceversa) 6

Numerical Example: 2 × 2 State-Space to ARMA Step 2: Zeta Transform

 $\begin{cases} zX_1(z) = X_1(z) + 2X_2(z) + U(z) \\ zX_2(z) = 3X_1(z) + 4X_2(z) \\ Y(z) = X_1(z) \end{cases}$



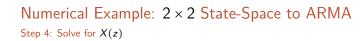
Numerical Example: 2 × 2 State-Space to ARMA Step 3: Rearrange in Matrix Form

$$\begin{cases} (zI - A)X(z) = BU(z) \\ Y(z) = CX(z) + DU(z) \end{cases}$$

implies

$$\begin{cases} \begin{bmatrix} z-1 & -2 \\ -3 & z-4 \end{bmatrix} \begin{bmatrix} X_1(z) \\ X_2(z) \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \end{bmatrix} U(z) \\ Y(z) = \begin{bmatrix} 1 & 0 \end{bmatrix} \begin{bmatrix} X_1(z) \\ X_2(z) \end{bmatrix}$$

- state space from ARMA (and viceversa) 8



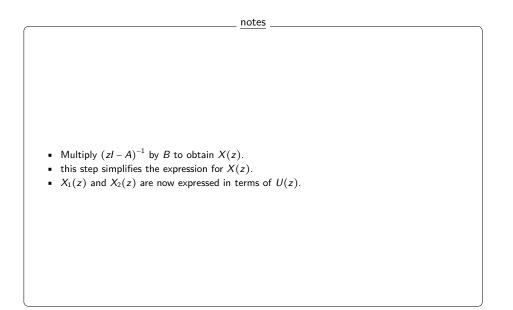
$$X(z) = (zI - A)^{-1}BU(z)$$
$$(zI - A) = \begin{bmatrix} z - 1 & -2 \\ -3 & z - 4 \end{bmatrix}$$
$$(zI - A)^{-1} = \frac{1}{(z - 1)(z - 4) - (-2)(-3)} \begin{bmatrix} z - 4 & 2 \\ 3 & z - 1 \end{bmatrix}$$
$$\det(zI - A) = (z - 1)(z - 4) - 6 = z^2 - 5z - 2$$
$$(zI - A)^{-1} = \frac{1}{z^2 - 5z - 2} \begin{bmatrix} z - 4 & 2 \\ 3 & z - 1 \end{bmatrix}$$

Numerical Example: 2 × 2 State-Space to ARMA

Step 5: Multiply by B

Now, multiply by B:

$$X(z) = \frac{1}{z^2 - 5z - 2} \begin{bmatrix} z - 4 & 2\\ 3 & z - 1 \end{bmatrix} \begin{bmatrix} 1\\ 0 \end{bmatrix} U(z) = \frac{1}{z^2 - 5z - 2} \begin{bmatrix} z - 4\\ 3 \end{bmatrix} U(z)$$



- state space from ARMA (and viceversa) 10

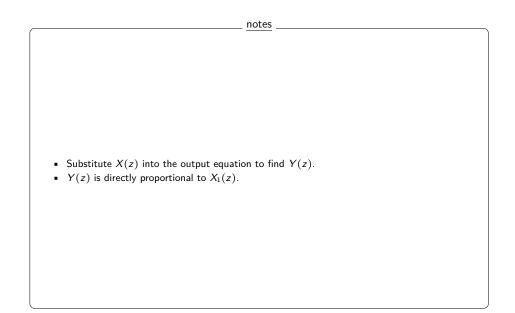
Numerical Example: 2×2 State-Space to ARMA Step 6: Solve for Y(z)

Substitute X(z) into the output equation:

$$Y(z) = CX(z) + DU(z) = \begin{bmatrix} 1 & 0 \end{bmatrix} \begin{bmatrix} X_1(z) \\ X_2(z) \end{bmatrix} = X_1(z)$$

Thus:

$$Y(z) = \frac{z-4}{z^2-5z-2}U(z)$$



Numerical Example: 2 × 2 State-Space to ARMA

Step 7: Final Result

Transfer function H(z):

$$H(z) = \frac{Y(z)}{U(z)} = \frac{z-4}{z^2 - 5z - 2}$$

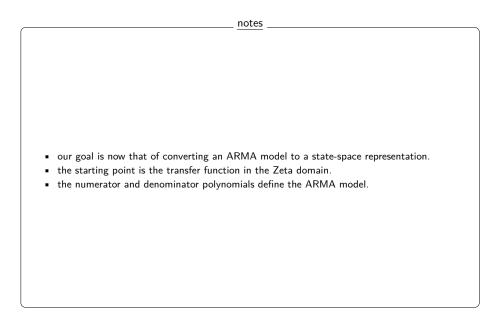
and from this we get the ARMA representation of the system as before

notes	
 this is the ARMA representation of the system. 	

notes

- state space from ARMA (and viceversa) 12

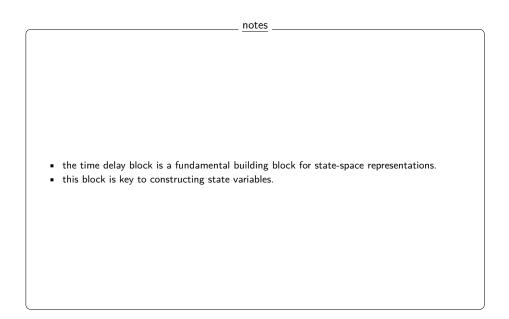
$$y[k] = \frac{b(z)}{a(z)}u[k] = \frac{b_1 z^{n-1} + \dots + b_n}{z^n + a_1 z^{n-1} + \dots + a_n}u[k]$$



- state space from ARMA (and viceversa) 2

Building block = the time-delay (block)

 $y \longrightarrow z^{-1} \longrightarrow y^{-1}$

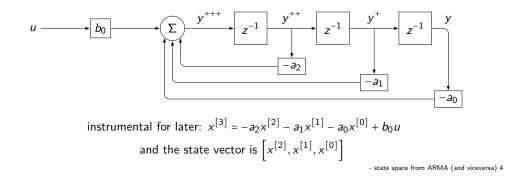


How do we use delays?

$$y^{+++} + a_2 y^{++} + a_1 y^{+} + a_0 y = b_0 u$$

$$\downarrow$$

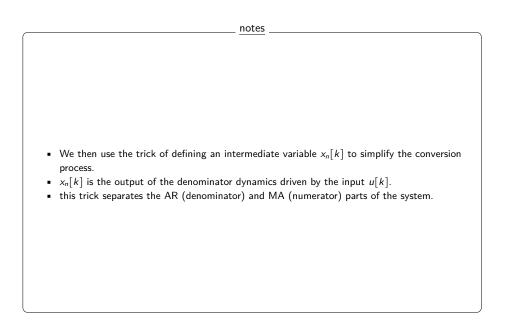
$$y^{+++} = -a_2 y^{++} - a_1 y^{+} - a_0 y + b_0 u$$



This shows how to rearrange a higher-order differential equation into a form suitable for state-space representation.
the highest derivative is expressed as a function of lower derivatives and the input.
this step is crucial for defining the state variables.

Towards SS with a useful trick

$$y[k] = \frac{b(z)}{a(z)}u[k] = \frac{b_1 z^{n-1} + \dots + b_n}{z^n + a_1 z^{n-1} + \dots + a_n}u[k] \to \begin{cases} x^{[0]} = \frac{1}{a(z)}u \\ y = b(z)x^{[0]} \end{cases}$$

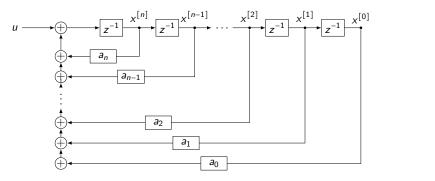


_ notes

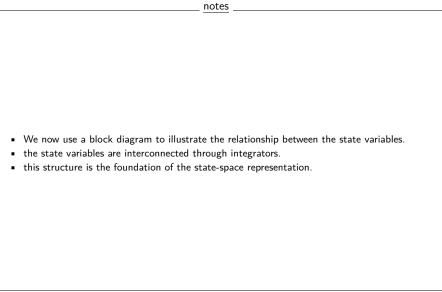
This is an AR model on $x^{[0]}$

$$x^{[0]} = \frac{1}{a(z)}u \implies a(z)x^{[0]} = u$$

implies

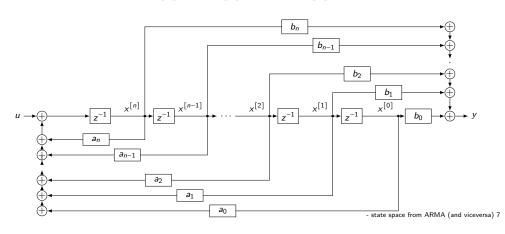


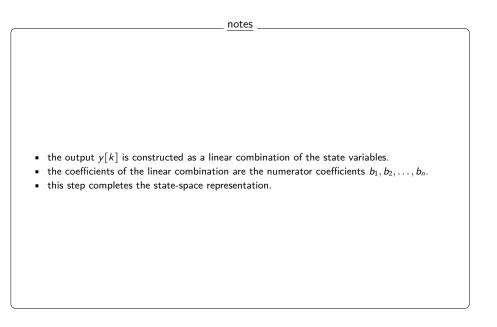
- state space from ARMA (and viceversa) 6



Completing the picture (a MA from x_n to y)

 $y[k] = b_n x^{[n]}[k] + \ldots + b_0 x^{[0]}[k]$





From concepts to formulas

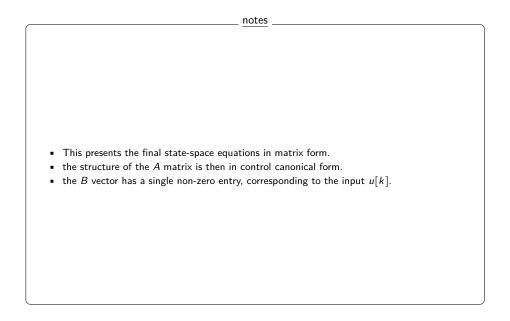
$$y[k] = b_n x^{[n]}[k] + \dots + b_0 x^{[0]}[k]$$

$$x^{[n]+}[k] = -a_n x^{[n]}[k] - \dots - a_0 x^{[0]}[k] + u[k] \rightarrow \begin{cases} \mathbf{x}^+ = A\mathbf{x} + Bu \\ y = C\mathbf{x} + Du \end{cases}$$

$$x^{[i]+}[k] = x^{[i]}[k]$$

$$\mathbf{x}^{+} := \begin{bmatrix} x^{[n]+} \\ x^{[n-1]+} \\ x^{[n-2]+} \\ \vdots \\ x^{[0]+} \end{bmatrix} = \begin{bmatrix} -a_n - a_{n-1} \cdots - a_0 \\ 1 & 0 & \cdots & 0 \\ 0 & 1 & 0 & \cdots & 0 \\ 0 & 1 & 0 & \cdots & 0 \\ \vdots \\ x^{[0]} \end{bmatrix} \begin{bmatrix} x^{[n]} \\ x^{[n-1]} \\ x^{[n-2]} \\ \vdots \\ x^{[0]} \end{bmatrix} + \begin{bmatrix} 1 \\ 0 \\ 0 \\ \vdots \\ 0 \end{bmatrix} u$$

- state space from ARMA (and viceversa) 8



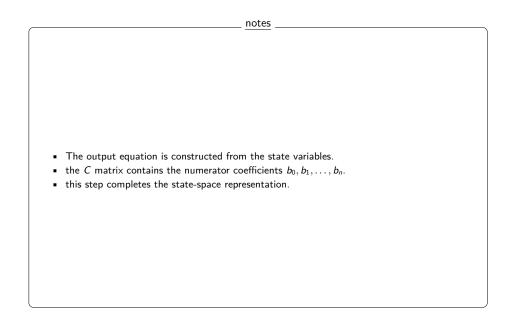
And y?

$$y[k] = b_n x^{[n]}[k] + \ldots + b_0 x^{[0]}[k]$$

$$x^{[n]+}[k] = -a_n x^{[n]}[k] - \ldots - a_0 x^{[0]}[k] + u[k] \rightarrow \begin{cases} \mathbf{x}^+ &= A\mathbf{x} + Bu \\ y &= C\mathbf{x} + Du \end{cases}$$

$$x^{[i]+}[k] = x^{[i]}[k]$$

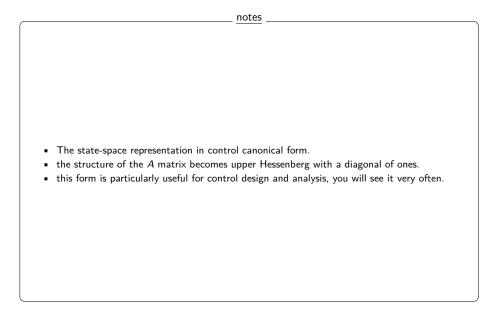
$$y = \begin{bmatrix} b_n & b_{n-1} & b_{n-2} & \ldots & b_0 \end{bmatrix} \begin{bmatrix} x^{[n]} \\ x^{[n-1]} \\ x^{[n-2]} \\ \vdots \\ x^{[0]} \end{bmatrix}$$



From ARMA to state space (in Control Canonical Form)

$$\begin{pmatrix} x^{[n]+} \\ x^{[n-1]+} \\ x^{[n-2]+} \\ \vdots \\ x^{[0]+} \end{pmatrix} = \begin{bmatrix} -a_n & -a_{n-1} & \dots & -a_0 \\ 1 & 0 & \dots & 0 \\ 0 & 1 & 0 & \dots & 0 \\ & \ddots & \ddots & \ddots & \\ & & 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} x^{[n]} \\ x^{[n-2]} \\ \vdots \\ x^{[0]} \end{bmatrix} + \begin{bmatrix} 1 \\ 0 \\ 0 \\ \vdots \\ 0 \end{bmatrix} u$$

- state space from ARMA (and viceversa) 10



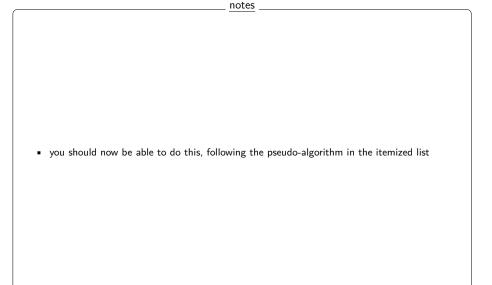
Matlab / Python implementation
[A, B, C, D] = tf2ss([bn .. b0], [1 an .. a0])
• the MATLAB/Python function tf2ss is used for converting transfer functions to state-space form.
• the input arguments are the numerator and denominator coefficients of the transfer function.
• this function automates the process of deriving the state-space matrices.
• you can use this function to transfer your hand calculations only for small examples, at work don't do computations by hand

Summarizing

Determine the state space structure of an discrete time LTI system starting from an ARMA RR

- there are some formulas, that you may simply know by heart, or that you may want to understand
- for understanding there is the need to get how the transformations work, and what is what
- likely the most important point is that to go from ARMA to SS the (likely) most simple strategy is to build the states as a chain of delays, and ladder on top of that

- state space from ARMA (and viceversa) 12

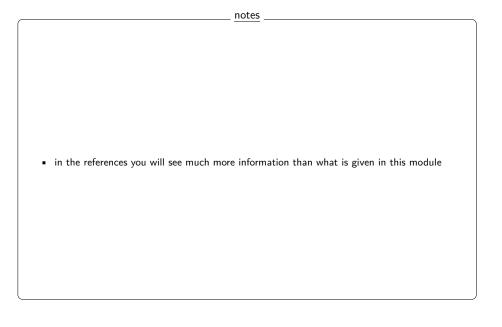


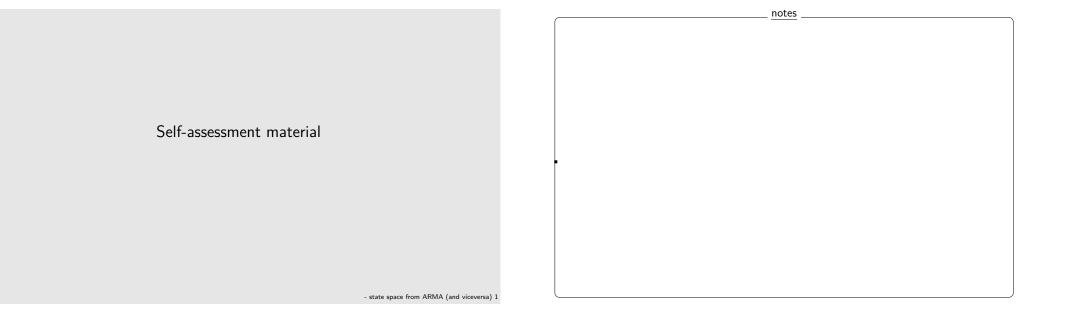
Most important python code for this sub-module

<u>notes</u>	

These functions have also their opposite, i.e., tf2ss

- https://docs.scipy.org/doc/scipy/reference/generated/scipy. signal.ss2tf.html
- https://python-control.readthedocs.io/en/latest/generated/ control.ss2tf.html





Question 1

Given the discrete-time ARMA model:

$$y^{+++} + a_2 y^{++} + a_1 y^+ + a_0 y = b_0 u$$

what is the correct state-space representation in control canonical form?

Potential answers: I: (wrong) $\begin{cases}
x_1^+ = -a_2x_1 - a_1x_2 - a_0x_3 + b_0u \\
x_2^+ = x_1 \\
x_3^+ = x_2 \\
y = x_3
\end{cases}$ II: (correct) $\begin{cases}
x_1^+ = -a_2x_1 - a_1x_2 - a_0x_3 + u \\
x_2^+ = x_1 \\
x_3^+ = x_2 \\
y = b_0x_3
\end{cases}$ - state space from ARMA (and viceversa) 2

Question 2

For the state-space system:

$$\begin{cases} x_1^+ = -3x_1 + 2x_2 + u \\ x_2^+ = x_1 \\ y = 4x_1 + x_2 \end{cases}$$

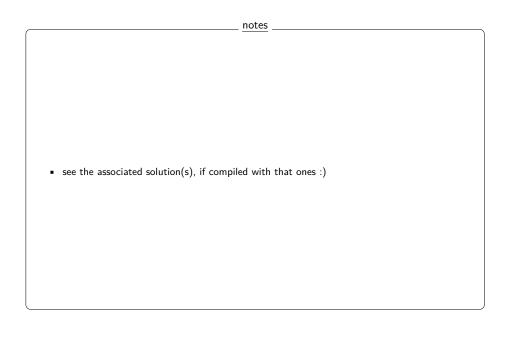
what is the equivalent ARMA model?

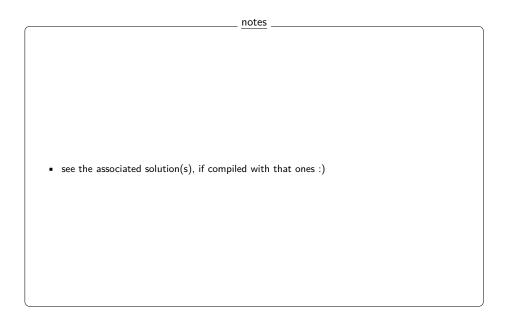
Potential answers:

I: (wrong) $y^{++} + 3y^{+} - 2y = 4u^{+} + u$ II: (correct) $y^{++} + 3y^{+} - 2y = u^{+} + 4u$ III: (wrong) $y^{++} - 3y^{+} + 2y = u^{+} + 4u$ IV: (wrong) $y^{++} + 3y^{+} + 2y = 4u^{+} + u$ V: (wrong)I do not know

- state space from ARMA (and viceversa) 3

The ARMA model is derived from $(z^2+3z-2)Y(z) = (z+4)U(z)$, corresponding





Question 3

In discrete-time state-space representations, the delay operator z^{-1} primarily:

Potential answers:

l: (wrong)	Approximates continuous-time integration
II: (correct)	Implements the time-shift operation $x[k] \rightarrow x[k-1]$
III: (wrong)	Adds stochastic noise to the system
IV: (wrong)	Reduces computational complexity
V: (wrong)	l do not know

Solution 1:

The z^{-1} operator represents a unit delay in discrete-time systems, equivalent to the time-shift operation. This is fundamental for implementing state updates in difference equations.

see the associated solution(s), if compiled with that ones :)

Question 4

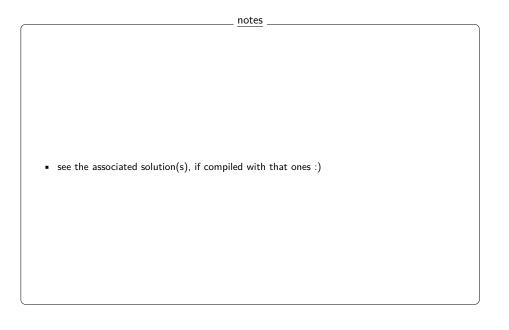
The control canonical form's state matrix A always:

Potential answers:

I: (wrong)Is diagonal with poles on the diagonalII: (correct)Has AR coefficients in its first row and shifted identity belowIII: (wrong)Makes the B matrix identical to C^{T} IV: (wrong)Minimizes the number of nonzero elementsV: (wrong)I do not know

Solution 1:

Control canonical form structures A with $-a_n$ to $-a_0$ in the first row and shifted identity submatrix, ensuring direct mapping from ARMA coefficients. This form guarantees controllability.



notes

Question 5

When converting state-space to ARMA via Z-transform, the operator $(zI - A)^{-1}$:

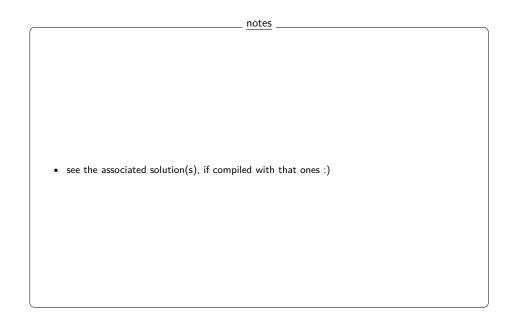
Potential answers:

I: (wrong)	Directly gives the system's impulse response
ll: (correct)	Is the resolvent matrix needed to solve for $X(z)$
III: (wrong)	Always results in a diagonalizable matrix
IV: (wrong)	Can be omitted if $D \neq 0$
V: (wrong)	l do not know

Solution 1:

The resolvent matrix $(zI - A)^{-1}$ is essential for solving $X(z) = (zI - A)^{-1}BU(z)$, which is then used to derive the transfer function $H(z) = C(zI - A)^{-1}B + D$.

- state space from ARMA (and viceversa) $\boldsymbol{6}$



Recap of sub-module "state space from ARMA (and viceversa)"

- one can go from ARMA to state space and viceversa
- we did not see this, but watch out that the two representations are not equivalent: there are systems that one can represent with state space and not with ARMA, and viceversa
- typically state space is more interpretable, and tends to be the structure used when doing model predictive control

