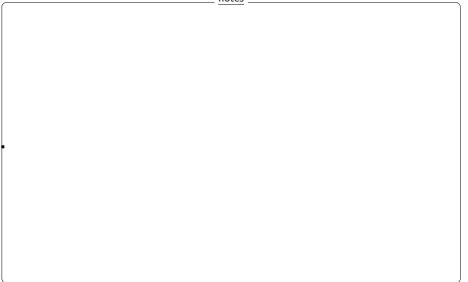

Table of Contents I • what is an impulse response

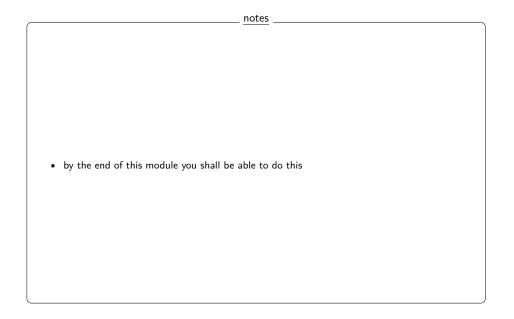
- - Most important python code for this sub-module
 - Self-assessment material

• this is the table of contents of this document; each section corresponds to a specific part of the course

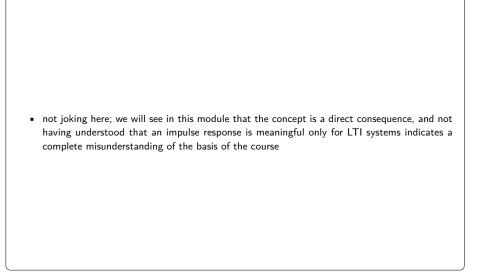

- 1

Contents map

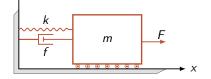
Dirac deltau1, e1impulse responseu1, e1	developed content units	taxonomy levels
impulse response u1, e1	Dirac delta	u1, e1
	impulse response	u1, e1


prerequisite content units	taxonomy levels
superposition principle	u1, e1
Euler backwards discretization	u1, e1
LTI RR	ul, el

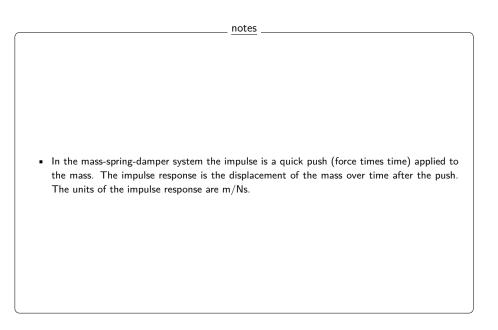
- what is an impulse response 2


Main ILO of sub-module <u>"what is an impulse response"</u>

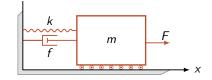
Describe what the impulse response of an LTI system is in practice


notes

talking about the impulse response of a nonlinear system is such a big mistake that may make you fail the exam on the spot

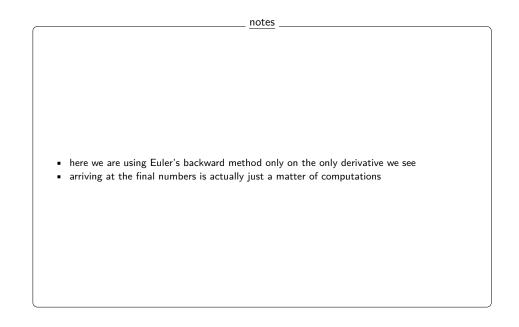


- what is an impulse response 4

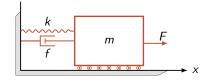

Practical example: spring-mass system

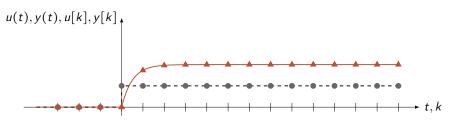
- output = position
- input = force (in Newtons)

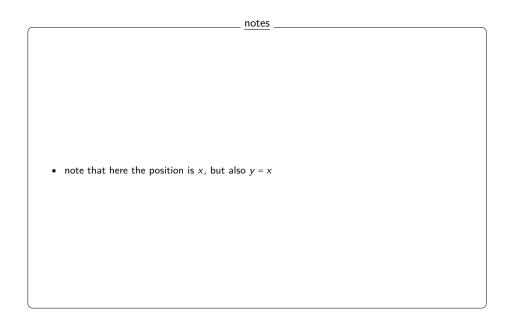
Discretizing the spring-mass system with a Euler backwards scheme

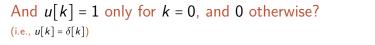


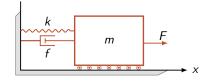
Newton
$$\mapsto \ddot{y}(t) + a_1 \dot{y}(t) + a_0 y(t) = b_0 u(t)$$

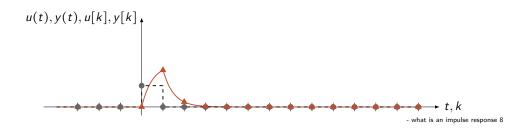

becomes, with Euler,

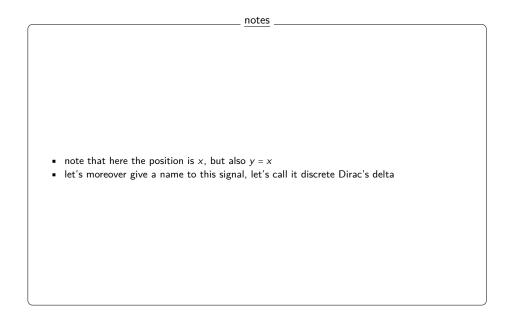

$$y^{++} + \alpha_1 y^+ + \alpha_0 y = \beta u$$

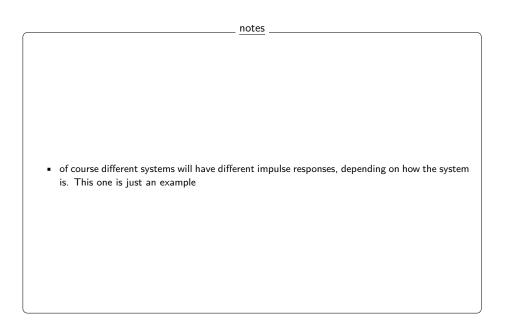

- what is an impulse response 6

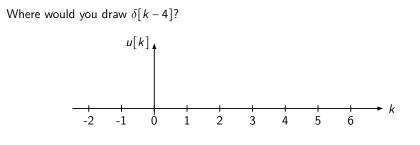


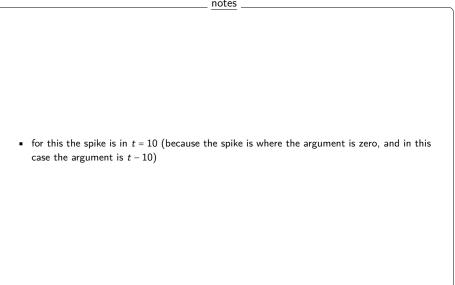

What does it mean to apply a control signal u[k] = step?



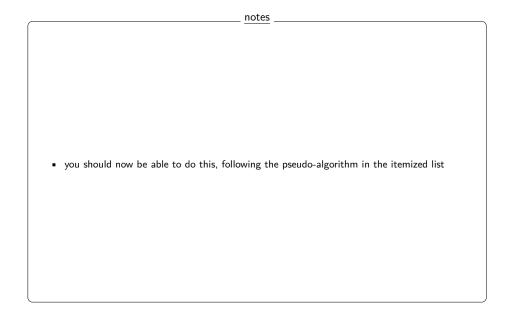







The impulse response for DT LTI systems

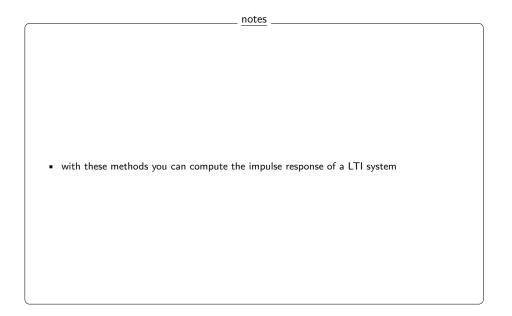
Discussion



Summarizing

Describe what the impulse response of an LTI system is in practice

• an opportune behavior of the response of a LTI system to a discrete Dirac's delta


- what is an impulse response 11

Most important python code for this sub-module

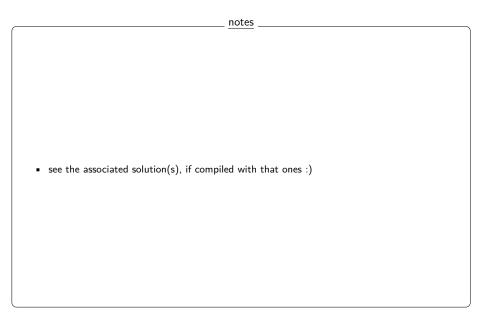
- what is an impulse response 2

Important libraries / methods

- https://docs.scipy.org/doc/scipy/reference/generated/scipy. signal.impulse.html
- https://python-control.readthedocs.io/en/latest/generated/ control.impulse_response.html

Self-assessment material

- what is an impulse response 1


Question 1

What is the impulse response of an LTI system?

Potential answers:		
I: (correct) delta.	The output of the system when the input is a discrete Dirac's	
ll: (wrong)	The output of the system when the input is a step function.	
III: (wrong)	The output of the system when the input is a sinusoidal signal.	
IV: (wrong)	The output of the system when the input is a random signal.	
V: (wrong)	I do not know	

Solution 1:

The impulse response of an LTI system is defined as the output of the system when the input is a discrete Dirac's delta ($\delta[k]$). This response characterizes at hepulse response 2 system's behavior and is fundamental to understanding LTI systems.

Question 2

Why is the impulse response meaningful only for LTI systems?

Potential answers:

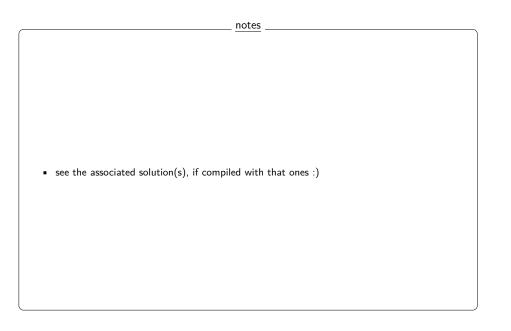
I:	(<u>wrong</u>)	Because nonlinear systems do not have outputs.
II:	(<u>correct</u>)	Because the impulse response relies on the superposition prin-
	ciple, which	n is valid only for LTI systems.
111:	(<u>wrong</u>)	Because the impulse response is only defined for continuous-time
	systems.	
IV:	(<u>wrong</u>)	Because the impulse response is too complex for nonlinear
	systems.	
V:	(wrong)	l do not know

Solution 1:

- what is an impulse response 3

The impulse response is meaningful only for LTI systems because it relies on the superposition principle, which holds true only for linear and time-invariant systems. Nonlinear systems do not satisfy the superposition principle, making the concept of impulse response invalid for them.

Question 3


What happens to the impulse response of a discrete-time LTI system if the input is $\delta[k-4]$?

Potential answers: I: (wrong) The impulse response becomes zero. II: (correct) The impulse response is shifted by 4 time units. III: (wrong) The impulse response is scaled by a factor of 4.

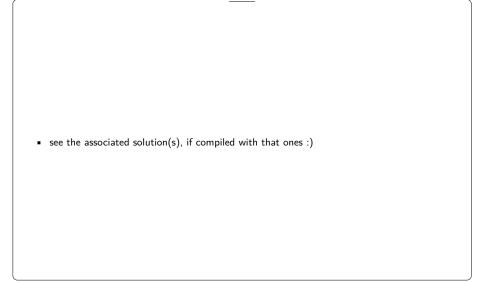
- IV: (wrong) The impulse response becomes nonlinear.
- V: (wrong) I do not know

Solution 1:

For a discrete-time LTI system, if the input is $\delta[k-4]$, the impulse response is shifted by 4 time units. This is a consequence of the time-invariance property of pulse response 4 LTI systems.

see the associated solution(s), if compiled with that ones :)

Question 4

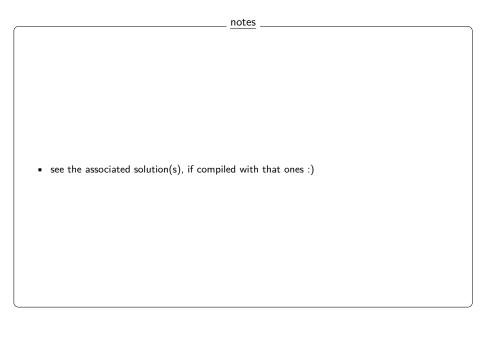

What is the practical significance of the impulse response in analyzing LTI systems?

Potential answers:

I: (wrong)	It allows us to ignore the system's initial conditions.
ll: (correct)	It characterizes the system's behavior and can be used to
determine t	the output for any input.
III: (wrong)	It ensures the system response is always sinusoidal.
IV: (wrong)	It makes the system response independent of the input.
V: (wrong)	l do not know

Solution 1:

The impulse response is significant because it characterizes the behavior of an LTI system. Once the impulse response is known, the output of the system of Orpulse response 5 any input can be determined using convolution.


Question 5

In the context of a spring-mass-damper system, what does the impulse response represent?

Potential answers: I: (wrong) The steady-state position of the mass. II: (correct) The displacement of the mass over time after an instantaneous force is applied. III: (wrong) The force required to keep the mass at rest. IV: (wrong) The frequency of oscillation of the mass. V: (wrong) I do not know

Solution 1:

In a spring-mass-damper system, the impulse response represents the displacempulse response 6 ment of the mass over time after an instantaneous force (impulse) is applied. This response captures the system's dynamic behavior.

Recap of sub-module "what is an impulse response"

- impulse responses are directly connected to step responses
- actually this connection is valid only if the system is LTI

• the most important remarks from this sub-module are these ones