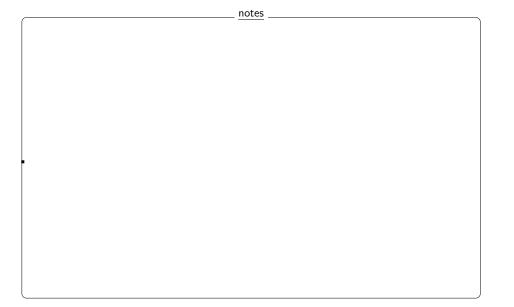

Table of Contents I

- what is the superposition principle, and what does it imply
 - Most important python code for this sub-module
 - Self-assessment material

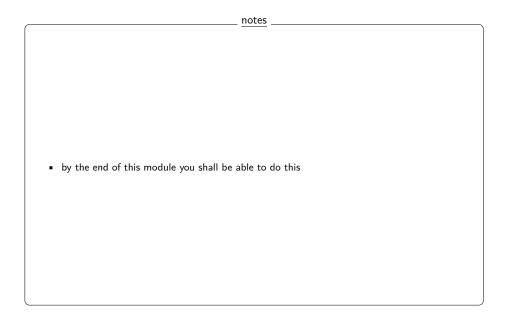
- 1


what is the superposition principle, and what does it imply

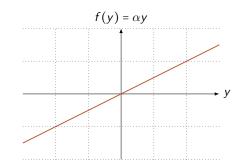
Contents map

developed content units	taxonomy levels
superposition principle	u1, e1

prerequisite content units	taxonomy levels
LTI RR	u1, e1

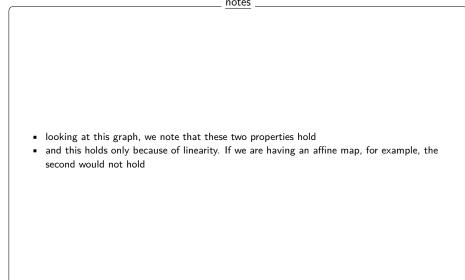


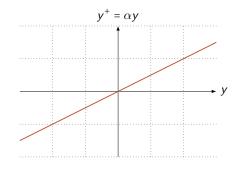
- what is the superposition principle, and what does it imply 2


Main ILO of sub-module

"what is the superposition principle, and what does it imply"

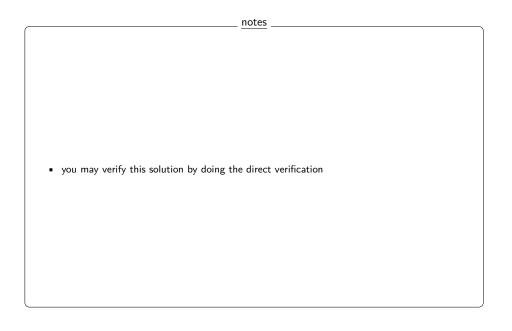
Describe the importance of the superposition principle to analyze LTI systems


Starting with graphs

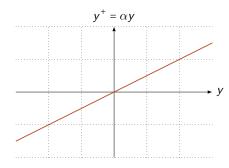

implications/definition of linearity:

- f(x+y) = f(x) + f(y)
- $f(\alpha y) = \alpha f(y)$

- what is the superposition principle, and what does it imply 4


What if we interpret this as a RR?

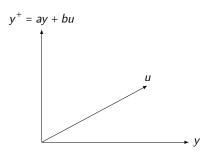
 \implies an LTI system, for which


 $y^+ = \alpha y$ is solved by $y[k] = y[0]\alpha^k \quad \forall y[0], \alpha, k$

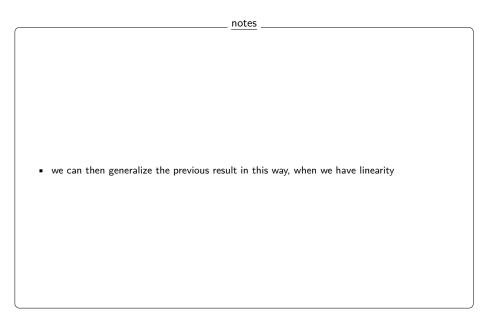
- what is the superposition principle, and what does it imply 5

notes

And can we build on top of this?


\implies an LTI system, for which

- $y'[0] = 2 \mapsto y'[k] = 2\alpha^k$
- $y''[0] = 3 \mapsto y''[k] = 3\alpha^k$
- $y'''[0] = 3 + 2 \mapsto y'''[k] = (3+2)\alpha^k$


 $y'[0] + y''[0] \mapsto y'[k] + y''[k]^{k}$ the superposition principle, and what does it imply 6

Further generalization

- $\{y'[0], u'\} \mapsto y'[k]$ $\{y''[0], u''\} \mapsto y''[k]$ $\{y'[0] + y''[0], u' + u''\} \mapsto y'[k] + y''[k]$

Aiding intuitions with math

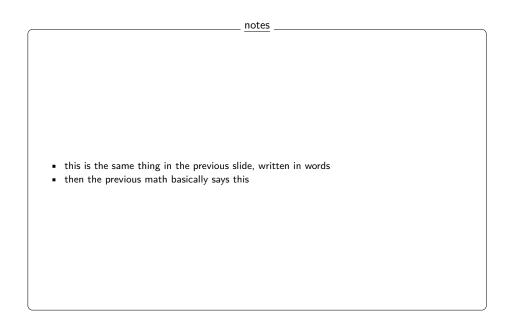
Linearity implies that if $\{y', u', y'[0]\}$ and $\{y'', u'', y''[0]\}$ satisfy

$$\begin{cases} y'[k+1] = ay'[k] + bu'[k] \\ y'[0] = y'_{0} \\ y''[k+1] = ay''[k] + bu''[k] \\ y''[0] = y''_{0} \end{cases}$$
(1)

then their sum also satisfies

$$\begin{cases} \left(\alpha' y'[k+1] + \alpha'' y''[k+1]\right) &= a(\alpha' y'[k] + \alpha'' y''[k]) + b(\alpha' u'[k] + \alpha'' u''[k]) \\ \alpha' y'[0] + \alpha'' y''[0] &= \alpha' y'_0 + \alpha'' y''_0 \end{cases}$$
(2)

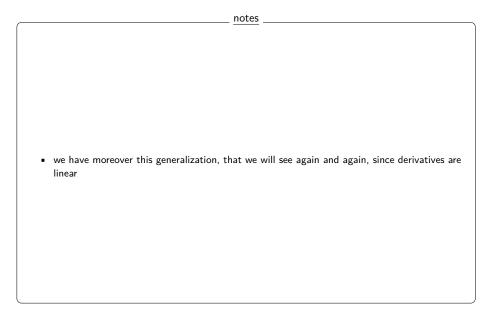
- what is the superposition principle, and what does it imply 8

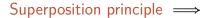


Rephrasing

Linearity implies that if $\{y', u', y'[0]\}$ and $\{y'', u'', y''[0]\}$ satisfy the RR then also their sum $\{y' + y'', u' + u'', y'[0] + y''[0]\}$ satisfies the RR.

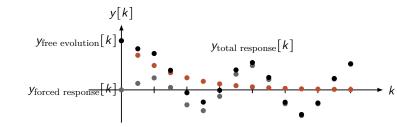
The superposition principle in words

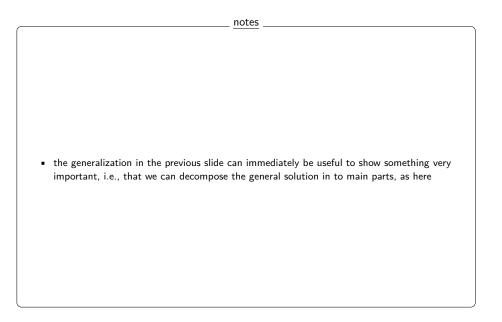

in LTI systems combining inputs and initial conditions produces a total effect that is the linear combination of that effects one would get with the individual causes each acting separately


Important: the superposition principle works with any LTI

Will be repeated and stated again precisely later on

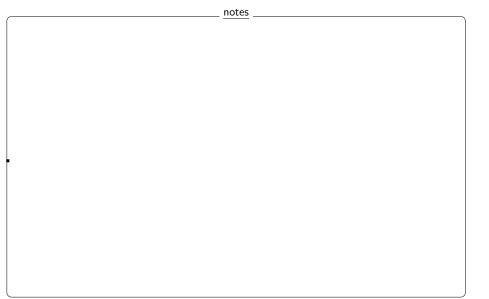
the proof holds for every system that generalizes $y^+ = ay + bu$, i.e., every "linear combination of temporal shifts of y = linear combination of temporal shifts of u"


- what is the superposition principle, and what does it imply 10

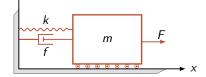

response of LTIs = free evolution + forced response

assume:

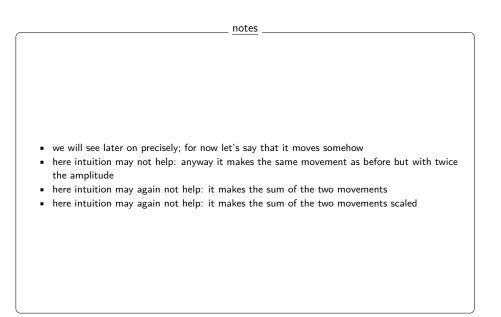
- $y^+ = ay + bu$
- $\{u[k] = 0[k], y[0] \neq 0\}$ causes $y_{\text{free evolution}}[k]$
- $\{u[k] \neq 0[k], y[0] = 0\}$ causes $y_{\text{forced response}}[k]$



A mnemonic scheme (only for LTI systems!!)


 $(u, y_0) = (0, y_0) + (u, 0)$

total response = free evolution + forced response



- what is the superposition principle, and what does it imply $12 \ensuremath{$

Continuing with some intuitions

Discussion: how will the cart move if I use $u[k] = \sin(\omega kT)$ starting from a resting state? (only intuitively, assuming everything ideal) And what about if $u[k] = 2\sin(\omega kT)$? And what about $u[k] = \sin(\omega' kT) + \sin(\omega'' kT)$? And what about $u[k] = \alpha' \sin(\omega' kT) + \alpha'' \sin(\omega'' kT)$?

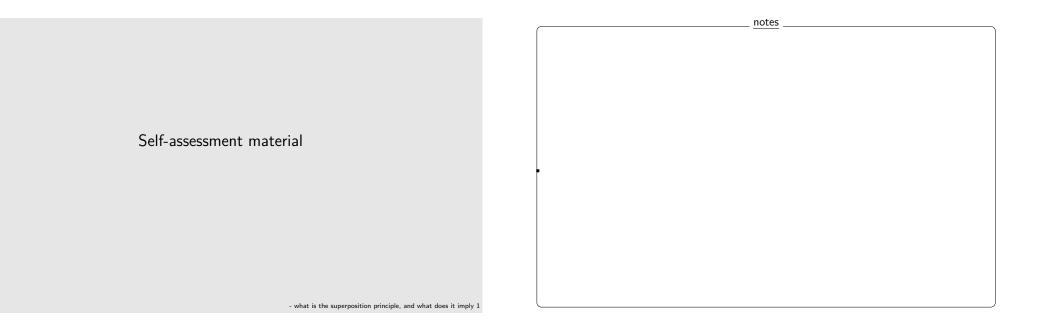
Summarizing

Describe the importance of the superposition principle to analyze LTI systems

• it makes us able to say "total = free + forced"

where the state of the
you should now be able to do this, following the pseudo-algorithm in the itemized list

- what is the superposition principle, and what does it imply 14


notes

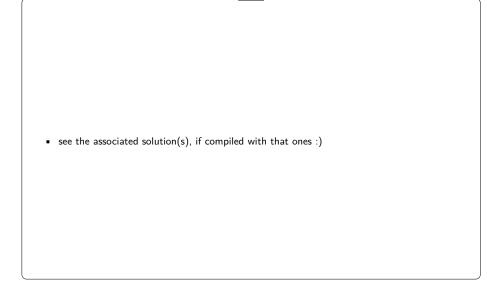
notes

Suggestion

part of the SciPy library (scipy.signal) provides tools for working with LTI systems, including creating transfer functions, state-space representations, and analyzing system responses (stuff that will be seen in the next modules)

	notes
 check this library, you will use it 	

Question 1

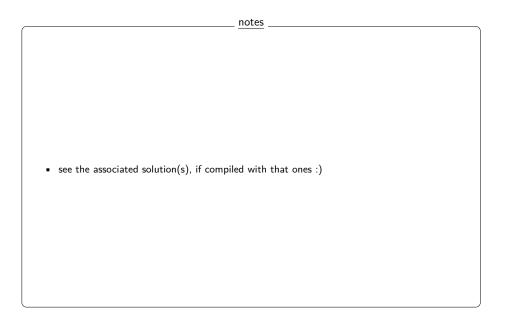

What is the primary implication of the superposition principle in LTI systems?

Potential answers:

I: (correct)	The total response is the sum of the free evolution and the
forced resp	onse.
ll: (wrong)	The system response is always exponential.
III: (wrong)	The system response is independent of the initial conditions.
IV: (wrong)	The system response is nonlinear.
V: (wrong)	l do not know

Solution 1:

The superposition principle in LTI systems allows us to decompose the total response into two components: the free evolution (responses.duesito initial.aQQAnt does it imply 2 ditions) and the forced response (response due to external inputs). This is a fundamental property of LTI systems.


Question 2

Which of the following properties is essential for a system to be considered linear?

Potential answ	vers:
I: (wrong)	The system response is always sinusoidal.
II: (<u>correct</u>)	The system satisfies the properties $f(x + y) = f(x) + f(y)$ and
$f(\alpha y) = \alpha f$	
III: (wrong)	The system response is independent of the input.
IV: (wrong)	The system response is always zero for zero input.
V: (wrong)	l do not know

Solution 1:

For a system to be linear, it must satisfy the properties of additivity (f(x + y) = f(x) + f(y)) and homogeneity $(f(\alpha y) = \alpha f(y))$ is the hose spreader does it imply 3 fundamental to the definition of linearity.

notes

Question 3

What happens to the response of an LTI system if the input is scaled by a factor α ?

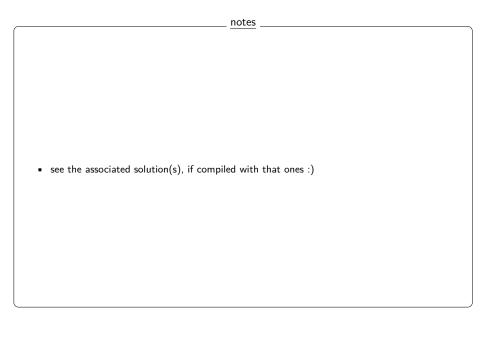
Potential answers:

I:	(wrong)	The response becomes nonlinear.
	(wrong)	The response remains unchanged.
	(correct)	The response is scaled by the same factor α .
IV:	(wrong)	The response becomes zero.
V:	(wrong)	l do not know

Solution 1:

In an LTI system, scaling the input by a factor α results in the response being scaled by the same factor α . This is a direct consequence of the homogeneity property of linear systems.

see the associated solution(s), if compiled with that ones :)


Question 4

What is the significance of the superposition principle in analyzing LTI systems?

Potential answers: I: (wrong) It allows us to ignore the initial conditions. II: (correct) It allows us to decompose the system response into free evolution and forced response. III: (wrong) It makes the system response independent of the input. IV: (wrong) It ensures the system response is always exponential. V: (wrong) I do not know

Solution 1:

The superposition principle is crucial in LTI systems because it allows us to break down the total response into two parts: the free evolution (duesitor initial a QOAnt does it imply 5 ditions) and the forced response (due to external inputs). This decomposition simplifies the analysis of complex systems.

Question 5

Which of the following statements is true about the superposition principle in LTI systems?

Potential answers:

I: (wrong)	It only applies to nonlinear systems.
II: (wrong)	It is only valid for zero initial conditions.
III: (correct)	It states that the response to a sum of inputs is the sum of the
responses t	o each input individually.
IV: (wrong)	It implies that the system response is always sinusoidal.
V: (wrong)	l do not know

Solution 1:

The superposition principle in LTI systems states that the the point on a pieum wolf does it imply 6 inputs is the sum of the responses to each input individually. This is a direct consequence of the linearity property of LTI systems.

see the associated solution(s), if compiled with that ones :)

Recap of sub-module

"what is the superposition principle, and what does it imply"

- superposition principle helps logically separating specific causes into specific effects
- linear RRs \implies superposition principle
- superposition principle \implies "whole = free + forced"
- nonlinear systems WON'T satisfy this principle!

 the most important remarks from this sub-module are these ones
- the most important remarks from this sub-module are these ones

notes

- what is the superposition principle, and what does it imply 7

notes .