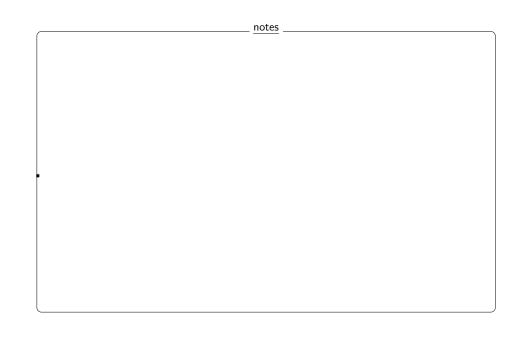
Table of Contents I

- building and interpreting phase portraits for RRs
 - Most important python code for this sub-module
 - Self-assessment material

 this is the table of contents of this document; each section corresponds to a specific part of the course

- 1

building and interpreting phase portraits for RRs



Contents map

taxonomy levels
u1, e1

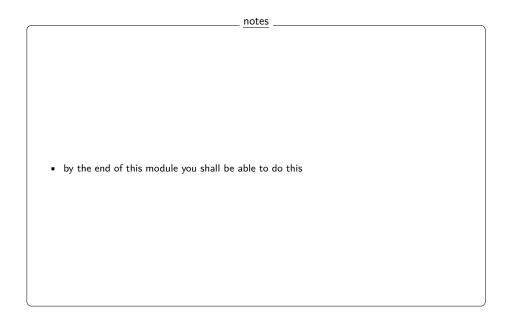
prerequisite content units	taxonomy levels
ODE	u1, e1
RR	u1, e1

1	notes

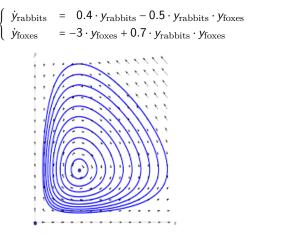
- building and interpreting phase portraits for RRs 2

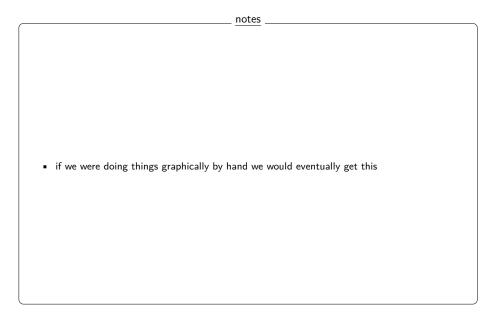
Main ILO of sub-module "building and interpreting phase portraits for RRs"

> **Construct** and interpret phase portraits of first- and secondorder autonomous RRs using qualitative analysis techniques

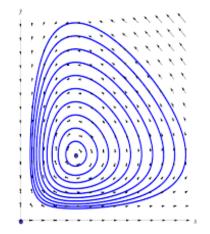


Starting with a CT example: a Lotka-Volterra model:





Phase Portrait in CT = a graphical representation of the trajectories of a dynamical system in the state space



A phase portrait provides insight into the qualitative behavior of a system without requiring explicit solutions.
It helps visualize equilibria, stability, and the general flow of solutions in state space.

But what happens if we discretize the system?

 $\left\{ \begin{array}{ll} \dot{y}_{\rm rabbits} &= 0.4 \cdot y_{\rm rabbits} - 0.5 \cdot y_{\rm rabbits} \cdot y_{\rm foxes} \\ \dot{y}_{\rm foxes} &= -3 \cdot y_{\rm foxes} + 0.7 \cdot y_{\rm rabbits} \cdot y_{\rm foxes} \end{array} \right.$

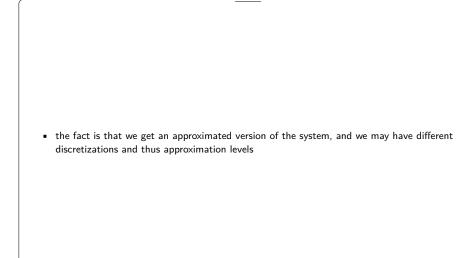
↓

 $\left\{ \begin{array}{ll} y^+_{\rm rabbits} &=& 1.3 \cdot y_{\rm rabbits} - 0.7 \cdot y_{\rm rabbits} \cdot y_{\rm foxes} \\ y^+_{\rm foxes} &=& 0.8 \cdot y_{\rm foxes} + 0.9 \cdot y_{\rm rabbits} \cdot y_{\rm foxes} \end{array} \right.$

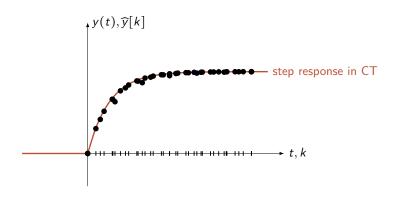
changing discretization time T will make the parameters change, and thus get different approximations

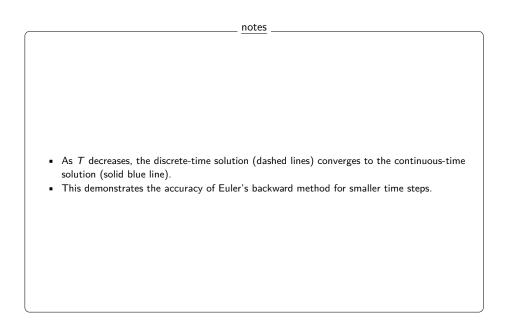
- building and interpreting phase portraits for RRs 6

- building and interpreting phase portraits for RRs 7



Important concept: as T decreases, DT discretizations become more and more accurate representations of the CT dynamics





Summarizing

Construct and interpret phase portraits of first- and secondorder autonomous RRs using qualitative analysis techniques

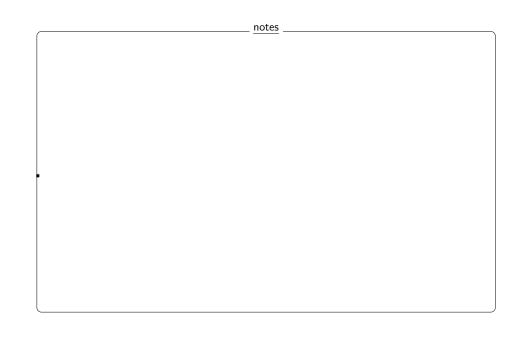
- the plots are basically the same that one may get from the phase portraits relative to ODEs, but they are discrete versions of them
- the accuracy of the discretization depends on the sampling period, and thus one shall always be a bit wary of the results one get

you should now be able to do this, following the pseudo-algorithm in the itemized list

- building and interpreting phase portraits for RRs 8

Most important python code for this sub-module

- building and interpreting phase portraits for RRs 1

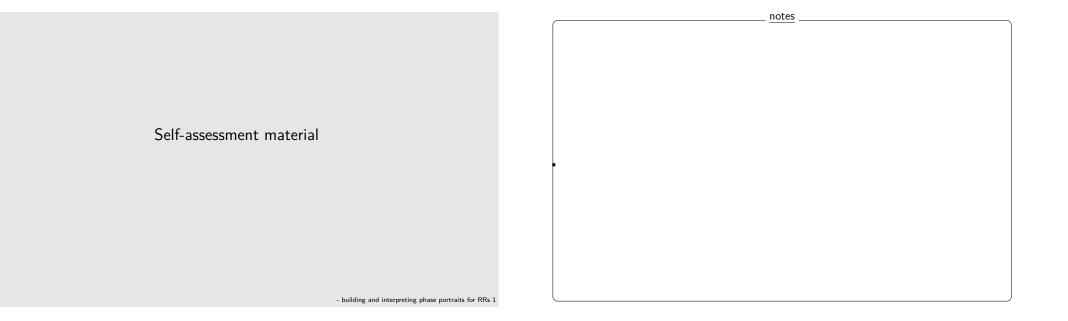


Tutorial on how to plot phase portraits

https://aleksandarhaber.com/

phase-portraits-of-state-space-models-and-differential-equations-in-python/

- building and interpreting phase portraits for RRs 2



Question 1

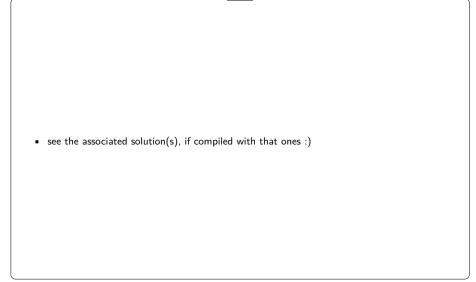
What is the primary purpose of a phase portrait for a discrete-time system?

Potential answers:

I: (wrong)	To compute the exact solution of the system
II: (correct)	To visualize the qualitative behavior of the system's trajectories
in state spa	ace
III: (wrong)	To determine the numerical stability of the system
IV: (wrong)	To solve the system's differential equations analytically
V: (wrong)	l do not know

Solution 1:

The primary purpose of a phase portrait is to visualize the qualitative behavior of the system's trajectories in state space, including equilibria, stability in and igeneral traits for RRs 2 flow patterns.



Question 2

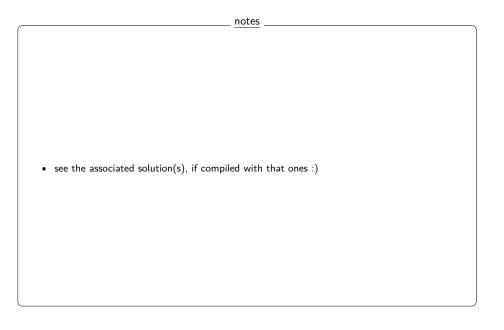
What happens to the accuracy of a discrete-time system's phase portrait as the discretization time T decreases?

Potential answers:

l: (wrong)	The phase portrait becomes less accurate	
II: (correct)	The phase portrait becomes more accurate, converging to the	
continuous-time solution		
III: (wrong)	The phase portrait remains unchanged	
IV: (wrong)	The phase portrait becomes unstable	
V: (wrong)	I do not know	

Solution 1:

As T decreases, the discrete-time system's phase portrait becomes more accurate barraits for RRs 3 converging to the continuous-time solution.



Question 3

When discretizing the Lotka-Volterra model, what is the effect of changing the discretization time T?

Potential answers:

l: (wrong) ll: (correct)	The system's equilibria change The parameters of the discretized system change, leading to
different approximations	
III: (wrong)	The system becomes unstable
IV: (wrong)	The system's trajectories become chaotic
V: (wrong)	l do not know

Solution 1:

Changing the discretization time T alters the parameters of the discretized system of the continuous-time dynamics.

see the associated solution(s), if compiled with that ones :)
 see the associated solution(s) it compiled with that ones ()
see the associated solution(s), if complice with that ones .)

Question 4

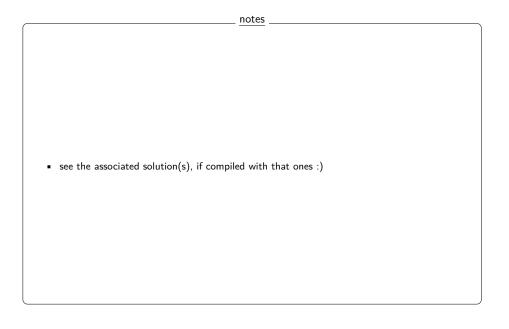
What does a stable equilibrium point in a discrete-time phase portrait indicate?

Potential answers:		
I: (wrong)	Trajectories diverge away from the equilibrium point	
II: (correct)	Trajectories converge to the equilibrium point over time	
III: (wrong)	The system exhibits periodic behavior	
IV: (wrong)	The system becomes chaotic	
V: (wrong)	I do not know	

Solution 1:

A stable equilibrium point in a discrete-time phase portrait indicates that trajectories converge to the equilibrium point over time.

- building and interpreting phase portraits for RRs 5



Question 5

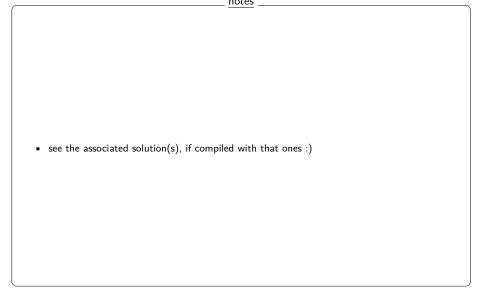
What does a closed loop in a discrete-time phase portrait typically represent?

Potential answers:		
A stable equilibrium point		
An unstable equilibrium point		
Periodic or quasi-periodic behavior		
Chaotic behavior		
I do not know		

Solution 1:

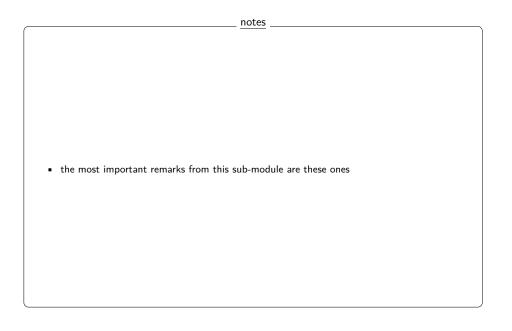
A closed loop in a discrete-time phase portrait typically represents periodic or quasi-periodic behavior, where the system's state repeats over time.

- building and interpreting phase portraits for RRs 6



Recap of sub-module "building and interpreting phase portraits for RRs"

- A phase portrait is a graphical representation of a dynamical systems trajectories in state space.
- Phase portraits provide qualitative insight into system behavior without requiring explicit solutions.
- First-order systems have a one-dimensional state space, while second-order systems require two dimensions, etc.
- The smaller the sampling period *T*, the closer the discrete-time phase portraits is to the one would get from the continuous time version of the system



notes