
Table of Contents I
how to get a RR from an ODE

the specific case of ARMA models
Most important python code for this sub-module
Self-assessment material

- 1

• this is the table of contents of this document; each section corresponds to a specific part of
the course

notes

how to get a RR from an ODE

- how to get a RR from an ODE 1

•

notes



Contents map

developed content units taxonomy levels
Euler forward discretization u1, e1
Euler backwards discretization u1, e1

prerequisite content units taxonomy levels
ODE u1, e1
RR u1, e1

- how to get a RR from an ODE 2

•

notes

Main ILO of sub-module “how to get a RR from an ODE”

Discretize ODEs and thus find recurrent relations
that approximate ODEs by means of Euler schemes

Discuss which factors affect the validity of Euler discretization
schemes and exemplify which problems may occur in practice

- how to get a RR from an ODE 3

• by the end of this module you shall be able to do this

notes



Roadmap
• why do we need to numerically simulate?
• Euler methods
• pros and cons
• connections with linearization

- how to get a RR from an ODE 4

• in this section we will discuss a bit more about how to simulate a dynamical model
• we will already mentioned this method before, but now we discuss it in more details, so to fix

knowledge
• the good point is that now that we saw linearization, we can say something more about the

method
• you can find a good explanation plus also some code in its wiki page, https://en.

wikipedia.org/wiki/Euler_method
• for a reference on python ODE solvers check https://pythonnumericalmethods.

berkeley.edu/notebooks/chapter22.06-Python-ODE-Solvers.html, while for Matlab
check https://se.mathworks.com/help/matlab/math/choose-an-ode-solver.html

notes

Our computers are digital machines, but the ODEs are “analogic” objects

{
ẋ = f (x, u)
y = g (x, u)

the need is for discretizing these objects, both in time and in space

- how to get a RR from an ODE 5

• we start recalling that our computers do not work with continuous time or continuous numbers
• to simulate such a system we need to introduce some approximation
• no matter how, note that there will always be some approximation. Maybe insignificant, but

numerically solving ODEs require discretizing both time and numbers

notes

https://en.wikipedia.org/wiki/Euler_method
https://en.wikipedia.org/wiki/Euler_method
https://pythonnumericalmethods.berkeley.edu/notebooks/chapter22.06-Python-ODE-Solvers.html
https://pythonnumericalmethods.berkeley.edu/notebooks/chapter22.06-Python-ODE-Solvers.html
https://se.mathworks.com/help/matlab/math/choose-an-ode-solver.html


Simulating nonlinear systems =
solving the ODE numerically and in a discrete way

i.e., use the fact that we know that ẏ = f (y , u), we know the whole u, and we know
the initial condition y(0) to compute a series of points ŷ[0], ŷ[1], ŷ[2], . . . , ŷ[H], that
approximate the whole trajectory y(0 ∶ H) with H a user-defined prediction horizon:

y(t), ŷ[k]

t, k

ŷ[1]

ŷ[2]

ŷ[3] ŷ[4]

ŷ[5]

- how to get a RR from an ODE 6

• the main intuition is to compute a set of points that correspond to a noisy sampling of the
actual trajectory of the system

• to do this one has as available information the fact that f provides information about where
the state is going

notes

The simplest numerical solver: Euler’s (forward) method

step 0: ŷ[0] = y(0)

step 1: ŷ[1] = ŷ[0] + f (ŷ[0], u(0))T

step 2: ŷ[2] = ŷ[1] + f (ŷ[1], u(T ))T

step 3: ŷ[3] = ŷ[2] + f (ŷ[2], u(2T ))T
...

...
...

...

u(t), y(t), y[k]

t, k

u(t)

ŷ[0] ŷ[1]

ŷ[2]

ŷ[3] ŷ[4]

ŷ[5]

- how to get a RR from an ODE 7

• the easiest way is to proceed by using first order approximations as follows
• this corresponds to follow the direction indicated by f for a determined period

notes



Tradeoffs:
• the more “gentle” ẏ = f (y), the more accurate the approximated trajectory ŷ
• the smaller T , the more accurate ŷ & the longer the CPU time
• the longer the prediction horizon in y(0 ∶ H), the less accurate the final prediction

−3 −2 −1 1 2

−10

10

y

ẏ

t

y(t), ŷ[k]

- how to get a RR from an ODE 8

• there are some known tradeoffs, that somehow are as intuition drives
• for example if f varies a lot between two neighboring points in the phase plane, then a small

difference in where the approximation makes the trajectory lands will make f vary a lot, that
means increasing even more in where the approximation will make the rest of the trajectory
land later on

notes

Known problem
Euler forward may be numerically unstable, especially for “stiff ODEs” (i.e., ODEs for
which some terms that can lead to rapid variation in the solution). Will be seen
extensively in following courses!

- how to get a RR from an ODE 9

• remember this name: “stiff ODE” is a synonym of f that has a high sensitivity to some of its
parameters

• as intuition says, with a stiff ODE we have a situation as before – it is like having a non-gentle
state update map

• for this type of ODEs there is the need for choosing some other solver. If you find your-
self in this situation check for example https://se.mathworks.com/help/matlab/math/
choose-an-ode-solver.html

notes

https://se.mathworks.com/help/matlab/math/choose-an-ode-solver.html
https://se.mathworks.com/help/matlab/math/choose-an-ode-solver.html


Note: Euler’s forward is only one algorithm of many

Euler Forward:

ŷ[k + 1] = ŷ[k] + f (ŷ[k], u(kT ))T

Euler Backward:

ŷ[k + 1] = ŷ[k] + f (ŷ[k + 1], u((k + 1)T ))T

can be generalized to Runge-Kutta methods, with known tradeoffs
and robustness properties; they will be studied in following courses

- how to get a RR from an ODE 10

• actually what we have seen before is only one of the potential strategies that one may follow
• there is actually plenty of ODE solvers, it is an active field of research
• different solvers have different properties, and one may make them very tailored for some

specific types of ODEs. I.e., make solvers that simulate very well a certain type of systems,
but worse some other ones

• for an extensive introduction (but you will see this topic also later on in your study course)
check https://issc.uj.ac.za/appliedmaths/honours/apm0137/2018/Runge%20Kutta%
20Notes_new.pdf

notes

the specific case of ARMA models

- how to get a RR from an ODE 1

•

notes

https://issc.uj.ac.za/appliedmaths/honours/apm0137/2018/Runge%20Kutta%20Notes_new.pdf
https://issc.uj.ac.za/appliedmaths/honours/apm0137/2018/Runge%20Kutta%20Notes_new.pdf


From Continuous-Time to Discrete-Time ARMA Models (with backwards)
from

dny(t)
dtn + an−1

dn−1y(t)
dtn−1 + ⋅ ⋅ ⋅ + a0y(t) = bm

dmu(t)
dtm + ⋅ ⋅ ⋅ + b0u(t)

substitute
d⋆
dt
↦

1 − q−1

T

d2⋆

dt2 ↦ (
1 − q−1

T
)

2

d3⋆

dt3 ↦ (
1 − q−1

T
)

3

...

- how to get a RR from an ODE 2

• Continuous-time ARMA models are differential equations driven by white noise.
• The goal is to discretize this model using Euler’s backward method.

notes

From Continuous-Time to Discrete-Time ARMA Models (with forward)
from

dny(t)
dtn + an−1

dn−1y(t)
dtn−1 + ⋅ ⋅ ⋅ + a0y(t) = bm

dmu(t)
dtm + ⋅ ⋅ ⋅ + b0u(t)

substitute
d⋆
dt
↦

q − 1
T

d2⋆

dt2 ↦ (
q − 1

T
)

2

d3⋆

dt3 ↦ (
q − 1

T
)

3

...

- how to get a RR from an ODE 3

• Continuous-time ARMA models are differential equations driven by white noise.
• The goal is to discretize this model using Euler’s forward method.

notes



Example with backwards

ẏ(t) + ay(t) = bu(t)

becomes
ŷ[k] − ŷ[k − 1]

T
+ aŷ[k] = bu[k]

or, rearranging,
(

1
T
+ a) ŷ[k + 1] + (− 1

T
) ŷ[k] = bu[k]

- how to get a RR from an ODE 4

• here we are using Euler’s backward method only on the only derivative we see

notes

Example with forward

ẏ(t) + ay(t) = bu(t)

becomes
ŷ[k + 1] − ŷ[k]

T
+ aŷ[k] = bu[k]

or, rearranging,
(

1
T
) ŷ[k + 1] + (− 1

T
+ a) ŷ[k] = bu[k]

- how to get a RR from an ODE 5

• here we are using Euler’s backward method only on the only derivative we see

notes



Example with backwards

ÿ(t) + a1ẏ(t) + a0y(t) = b1u̇(t) + b0u(t)

becomes

ŷ[k] (1 − q−1

T
)

2
+ a1ŷ[k] (1 − q−1

T
) + a0ŷ[k] = b1u[k] (1 − q−1

T
) + b0u[k]

Ô⇒ rearranging = “algebra”

- how to get a RR from an ODE 6

• here we are using Euler’s backward method only on the only derivative we see
• arriving at the final numbers is actually just a matter of computations

notes

Discussion
At work, if you have to discretize an ODE of order bigger than one, will you do by
hand, or will you use https://python-control.readthedocs.io/en/latest/
generated/control.matlab.c2d.html?

- how to get a RR from an ODE 7

• don’t do things by hand if they are not trivial

notes

https://python-control.readthedocs.io/en/latest/generated/control.matlab.c2d.html
https://python-control.readthedocs.io/en/latest/generated/control.matlab.c2d.html


What happens as T decreases?
Example

t, k

y(t), ŷ[k]

step response in CT

- how to get a RR from an ODE 8

• As T decreases, the discrete-time solution (dashed lines) converges to the continuous-time
solution (solid blue line).

• This demonstrates the accuracy of Euler’s backward method for smaller time steps.

notes

Summarizing

Discretize ODEs and thus find recurrent relations
that approximate ODEs by means of Euler schemes

Discuss which factors affect the validity of Euler discretization
schemes and exemplify which problems may occur in practice

• backwards or forward Euler = good initial choice
• stiffness of the starting ODE is an issue
• the longer the time horizon to predict, the more problems you will have

- how to get a RR from an ODE 9

• you should now be able to do this, following the pseudo-algorithm in the itemized list

notes



Most important python code for this sub-module

- how to get a RR from an ODE 1

•

notes

C2D
• https://python-control.readthedocs.io/en/latest/generated/

control.matlab.c2d.html
• https://www.mathworks.com/help/control/ref/dynamicsystem.c2d.html

- how to get a RR from an ODE 2

• there is a lot under the hood!

notes

https://python-control.readthedocs.io/en/latest/generated/control.matlab.c2d.html
https://python-control.readthedocs.io/en/latest/generated/control.matlab.c2d.html
https://www.mathworks.com/help/control/ref/dynamicsystem.c2d.html


Self-assessment material

- how to get a RR from an ODE 1

•

notes

Question 1

Which of the following is the most important general key factor affecting the accuracy
of Euler’s forward method when discretizing ODEs?

Potential answers:

I: (correct) The step size T
II: (wrong) The initial condition y(0)

III: (wrong) The type of input signal u(t)
IV: (wrong) The order of the ODE
V: (wrong) I do not know

Solution 1:

The step size T is in general the most important key factor affecting the accuracy
of Euler’s forward method. A smaller T generally leads to a more accurate
approximation of the ODE solution, but it also increases computational cost.

- how to get a RR from an ODE 2

• see the associated solution(s), if compiled with that ones :)

notes



Question 2

What is a common issue when using Euler’s forward method to solve stiff ODEs?

Potential answers:

I: (correct) Numerical instability
II: (wrong) Increased computational efficiency

III: (wrong) Exact solution with no error
IV: (wrong) Reduced sensitivity to initial conditions
V: (wrong) I do not know

Solution 1:

Stiff ODEs often lead to numerical instability when using Euler’s forward method
due to the high sensitivity of the solution to small changes in the state.

- how to get a RR from an ODE 3

• see the associated solution(s), if compiled with that ones :)

notes

Question 3

Which of the following is a tradeoff when using Euler’s forward method for ODE
discretization?

Potential answers:

I: (wrong) Smaller step size T reduces accuracy and increases CPU time
II: (wrong) Larger step size T reduces accuracy and increases CPU time

III: (correct) Smaller step size T increases accuracy but also increases CPU
time

IV: (wrong) Larger step size T increases accuracy and reduces CPU time
V: (wrong) I do not know

Solution 1:

A smaller step size T improves the accuracy of the Euler forward method but
increases the computational cost (CPU time) due to the need for more iterations.

- how to get a RR from an ODE 4

• see the associated solution(s), if compiled with that ones :)

notes



Question 4

What is the main difference between Euler’s forward and backward methods?

Potential answers:

I: (wrong) Euler’s backward method is always more accurate than Euler’s
forward method

II: (wrong) Euler’s backward method does not require an initial condition
III: (correct) Euler’s backward method uses the derivative at the next time

step
IV: (wrong) Euler’s backward method cannot be used for stiff ODEs
V: (wrong) I do not know

Solution 1:

Euler’s backward method uses the derivative at the next time step, making it an
implicit method. This often provides better stability for stiff ODEs compared to
Euler’s forward method.

- how to get a RR from an ODE 5

• see the associated solution(s), if compiled with that ones :)

notes

Question 5

When discretizing a continuous-time ARMA model using Euler’s backward method,
what substitution is made for the first derivative dy(t)

dt
?

Potential answers:

I: (correct) 1 − q−1

T
II: (wrong) q − 1

T
III: (wrong) q + 1

T
IV: (wrong) 1 + q−1

T
V: (wrong) I do not know

Solution 1:

When using Euler’s backward method, the first derivative dy(t)
dt

is substituted

with 1 − q−1

T
, where q−1 is the backward shift operator.

- how to get a RR from an ODE 6

• see the associated solution(s), if compiled with that ones :)

notes



Recap of sub-module “how to get a RR from an ODE”
• there are several ways of solving ODEs in a computer
• Euler is the most simple one, but it does not work well with stiff ODEs
• more advanced schemes have better numerical properties

- how to get a RR from an ODE 7

• the most important remarks from this sub-module are these ones

notes


	how to get a RR from an ODE

