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• welcome to the course!
• on this side of this document you will find notes that accompany the text typically visualized

in class
• these notes are meant to convey the messages that are not displayed in the text on the side,

and basically constitute what the teacher intends to say in class

notes
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• this is the table of contents of this document; each section corresponds to a specific part of
the course

notes
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•

notes

Intended Learning Outcomes (ILOs)

Modelling in Continuous Time - Intended Learning Outcomes (ILOs) 1

•

notes
By the end of module “Modelling in Continuous Time”, be able to: I

• Decide whether a given function is a solution to a specified ODE by direct
verification.

• Classify an ODE as linear or nonlinear, autonomous or non-autonomous,
time-invariant or time-varying, based on its structural properties.

• Compute the equilibria of an ODE by solving for stationary points.
• Construct and interpret phase portraits of first- and second-order autonomous

ODEs using qualitative analysis techniques.
• Interpret automatic control as an opportune operation on the dynamics of a

system.
• Linearize a nonlinear ODE around an equilibrium point and assess the validity of

the approximation.
• Evaluate the meaning and applicability of linearization in different contexts,

discussing when it provides a reasonable approximation and when it does not.

Modelling in Continuous Time - Intended Learning Outcomes (ILOs) 2



• go back to these all the times you revise this module

notes
By the end of module “Modelling in Continuous Time”, be able to: II

• Determine and analyze the impulse response of an LTI system via software.
• Compute the free evolution and forced response of an LTI system via software,

and also via the (continuous) convolution operator.
• Explain the significance of linearity and time-invariance in ODEs and how these

properties affect solution methods and system behavior.
• Apply the superposition principle to solve and analyze LTI systems,

demonstrating its implications in different scenarios.
• Compute free evolutions and forced responses of LTI systems using

Laplace-based formulas (but only as procedural tools).
• Define the meaning of “state space representation” in the context of linear and

non-linear dynamical systems.
• Determine the state space structure of an LTI system starting from an ARMA

ODE.

Modelling in Continuous Time - Intended Learning Outcomes (ILOs) 3

By the end of module “Modelling in Continuous Time”, be able to: III
• Analyse the structure of the free evolution of the state variables by means of the

eigendecomposition of the system matrix.
• Give examples of practical cases / real life systems to which one can apply the

various concepts / procedures mentioned above.

Modelling in Continuous Time - Intended Learning Outcomes (ILOs) 4

Is this function a solution of this ODE?

Modelling in Continuous Time - Is this function a solution of this ODE? 1



•

notes
Contents map

developed content units taxonomy levels
ODE u1, e1

prerequisite content units taxonomy levels
derivative u1, e1

Modelling in Continuous Time - Is this function a solution of this ODE? 2

•

notes
Main ILO of sub-module “Is this function a solution of this ODE?”

Decide whether a given function is a solu-
tion to a specified ODE by direct verification

Modelling in Continuous Time - Is this function a solution of this ODE? 3



• by the end of this module you shall be able to do this

notes
What is a signal?
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Modelling in Continuous Time - Is this function a solution of this ODE? 4

• a signal is any time-dependent (or space-dependent) variation of a physical quantity that con-
veys information. In engineering and science, signals can take many forms, such as electrical
voltages, sound waves, images, or sequences of numbers in a digital system

notes
What is the derivative of this signal?
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• we will extensively use this notation in the course; basically never use the ’d / dt’

notes
Would you say that y(t) = ẏ(t), in this case?
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Modelling in Continuous Time - Is this function a solution of this ODE? 6

• definitely not; the two signals are not the same at all

notes
“uhm, where are we going with all this stuff?”
↦ be able to do forecasts

would you be able to compute y(5) from
this graph, if you knew that ẏ(t) = y(t)?
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• we will see how an ODE (Ordinary Differential Equation) describes how a system’s state
evolves over time based on its current state and inputs. By the end of the course it will be
obvious how solving the ODE with given initial conditions, we can predict future states. This
is used in control to enable forecasting, that is essentially by propagating system dynamics
forward in time. We will also see though that the accuracy of forecasts depends on how well
the ODE models the real-world system (something that may be more or less good)

notes

an ODE is a tool to produce forecasts

notation: instead of ẏ(t) or y(t) we will write ẏ or y

Modelling in Continuous Time - Is this function a solution of this ODE? 8

• so this is an important message
• watch out at the notation; we will always mean signals, and not scalars

notes
But what does it mean to solve an ODE?
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• before continuing we need though to reflect on what it means to solve a differential equation.
Let’s take this example to investigate this concept

• remember that all the symbols here actually mean signals in time, i.e., they should be intended
as ẏ(t) = y(t) + u(t) ideally with t in a certain domain (typically [0,+∞))

• for example this combination of signals does not satisfy the equation
• this instead does

notes
Is knowing the ODE enough to be able to generate a trajectory?
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• no, there is the need for defining an initial condition to be able to draw the trajectory

notes
Does {y(t) = cos(t), y(0) = 1} solve this ODE?
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• no, because that specific signal does not satisfy the ODE

notes
Are we done with this?

Decide whether a given function is a solu-
tion to a specified ODE by direct verification

→ no, there are still a lot of cases we shall cover

Modelling in Continuous Time - Is this function a solution of this ODE? 12

• by the end of this module you shall be able to do this

notes
Notation time!

In control, modelling a dynamical system = defining

ẏ = f (y , u, d , θ) ,

thus defining:
• the variables

• u = inputs (i.e., what we can steer)
• d = disturbances (i.e., what we cannot steer but that still influences the

system)
• y = outputs (i.e., what we are interested into)

• the shape of f
• the value of its parameters θ

• bold font = vector

Modelling in Continuous Time - Is this function a solution of this ODE? 13



• let’s now generalize the ODE before to something that can be applied to more cases
• let’s do this definition, where the names are given in this way for historical reasons
• for example the Lotka Volterra model that we will see below is a specific example of this way

of writing things, where there is no u and d by the way
• once again f has the meaning of indicating “where” the system is going towards, in time -

also this will be more clear soon

notes
A graphical example of ẏ = f (y , u)

y

u
ẏ

https: // www. geogebra. org/ classic/ mmppe6hs

Modelling in Continuous Time - Is this function a solution of this ODE? 14

• the simplest trajectories are that ones that seem simple constant numbers

notes
A couple of ODEs that you may have already seen, of the type ẏ = ay + bu

• velocity of a cart: v̇(t) = − k
m

v(t) + k
m

F(t)

• RC-circuits: v̇C(t) = −
1

RC
vC(t) +

1
RC

V (t)

y

uẏ

Modelling in Continuous Time - Is this function a solution of this ODE? 15
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• you should have already seen these ODEs (or be able to derive them) from physics and
electronics

notes
Some more details about the first example

notation: F(t) = ma(t) = mv̇(t) ↦ F = ma = mv̇ (1)

. . . but v = ṗ, thus:

⎧⎪⎪⎪⎨⎪⎪⎪⎩

ṗ = v

v̇ = F
m

(2)

this is a system of ODEs

Modelling in Continuous Time - Is this function a solution of this ODE? 16

• first of all we will virtually always drop the ’t’ because we know we are working with time
signals

• moreover we also know that velocity is a time derivative of position, so we actually obtain a
system of ODEs from Newton laws

• in the next slide we see what is the geometric meaning of an ordinary differential equation or
systems of ODEs

notes
Another practical example

temperature of the center of a cake in an oven whose temperature is 200 degrees:

Ṫ = −0.5(T − 200)

t

y(t)
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• let’s do a practical example of a very simple ODE
• here we can see that starting from any T we ideally tend to go to Ta

• but how? Let’s see

notes

Modelling in Continuous Time - Is this function a solution of this ODE? 18

• https://en.wikipedia.org/wiki/The_Treachery_of_Images

notes
Important point: model ≠ real world

Ceci n’est pas un gâteau.

Ṫ = −0.5(T − 200)

Modelling in Continuous Time - Is this function a solution of this ODE? 19
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• we will re-consider this point later on, but for now it has to be obvious that this is an
approximated description of reality

• why we use them and what are the usages we’ll do about this, we’ll see later on in the course

notes
Another example: a Lotka-Volterra model (≠ real world):

{ ẏrabbits = 0.4 ⋅ yrabbits − 0.5 ⋅ yrabbits ⋅ yfoxes
ẏfoxes = −3 ⋅ yfoxes + 0.7 ⋅ yrabbits ⋅ yfoxes

t

yrabbits, yfoxes

Modelling in Continuous Time - Is this function a solution of this ODE? 20

• we may have though more complicated models
• for example this one is a model that may accurately describe the evolution of the populations

of preys and predators in a closed environment (we’ll discuss this one better later on)

notes
What do we mean with “dynamics”? More geometrically
(example: 2D system, autonomous)

example: two dimensional ẏ = f (y) in the sense of { ẏ1 = f1 (y1, y2)
ẏ2 = f2 (y1, y2)

y1

ẏ1

y2

y1

ẏ2

y2

t

y1, y2
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• graphically we have different objects
• one typically looks at trajectories in time
• but one may also think at the phase portrait of the outputs (or states, if one is working with

state space models)
• the important is to realize that for any given couple y , u one is able to compute f , that means

being able to compute the vector ẏ , that can be seen in the first set of cartesian axes
• then this ẏ can also be superposed in the axes for y , and we can give the interpretation that

this is where the system is moving towards
• intuitively, changing u means changing ẏ , that means also steering where the system is

heading towards
• note that the fact that they system has some dynamics means that if I want to reach a specific

y starting from a given initial condition y0, there is the need for waiting a bit of time before
we can reach the goal. We cannot go ’instantaneously’ to the goal

notes
Same example, alternative viewpoint

{ ẏ1 = f1 (y1, y2)
ẏ2 = f2 (y1, y2)

y1

y2

ẏ1

ẏ2

t

y1, y2

Modelling in Continuous Time - Is this function a solution of this ODE? 22

• we may though see this with an alternative viewpoint, that will lead us to linear algebra
formulations

notes
Coding the Lotka-Volterra example

{ ẏprey = αyprey − βypreyypred
ẏpred = −γypred + δypreyypred

./LotkaVolterraSimulator.ipynb

(we’ll see later on how this continuous thing
is actually implemented in our discrete computers)

Modelling in Continuous Time - Is this function a solution of this ODE? 23

./LotkaVolterraSimulator.ipynb


• to solve numerically the trajectories let’s explore and run the corresponding python notebook
• for now we will do things numerically; later on we will do it also analytically

notes
Discussion: did we model the Lotka-Volterra dynamical system here?

def myModel(y, t):
#
# parameters
alpha = 1.1
beta = 0.4
gamma = 0.4
delta = 0.1
#
# get the individual variables - for readability
yPrey = y[0]
yPred = y[1]
#
# individual derivatives
dyPreydt = alpha * yPrey - beta * yPrey * yPred
dyPreddt = - gamma * yPred + delta * yPrey * yPred
#
return [ dyPreydt, dyPreddt ]

Modelling in Continuous Time - Is this function a solution of this ODE? 24

• do you think that this code represents a model? yes, this contains all the information that is
needed to compute the f , i.e., the direction where the system is pointing towards given the
current situation of the system

notes
Discussion: do we need something more than just the model to simulate
the system?

{ ẏprey = 1.2yprey − 0.1ypreyypred
ẏpred = −0.6ypred + 0.2ypreyypred

Modelling in Continuous Time - Is this function a solution of this ODE? 25



• do you think we can simulate the model before just with this information? Or do we need
something more? no, because we need an initial condition. Starting from different initial
conditions we have completely different behaviors (think at no foxes vs there are some foxes)

notes
Remember: static ≠ dynamic

y = f (u, θ) ≠ ẏ = f (y , u, θ)

Modelling in Continuous Time - Is this function a solution of this ODE? 26

• thus remember always that we are working with ODEs, that means that f does not give what
is the output directly, but rather where the system is going to. It gives a derivative!

notes
Summarizing

Decide whether a given function is a solu-
tion to a specified ODE by direct verification

• check y , compute f (y), compute ẏ
• does f (y) = ẏ?
• same apply for higher orders / more complex ODES from notational perspectives

Modelling in Continuous Time - Is this function a solution of this ODE? 27



• you should now be able to do this, following the pseudo-algorithm in the itemized list

notes

Most important python code for this sub-module

Modelling in Continuous Time - Is this function a solution of this ODE? 1

•

notes
Solving ODEs

https://pythonnumericalmethods.studentorg.berkeley.edu/notebooks/
chapter22.06-Python-ODE-Solvers.html

Modelling in Continuous Time - Is this function a solution of this ODE? 2

https://pythonnumericalmethods.studentorg.berkeley.edu/notebooks/chapter22.06-Python-ODE-Solvers.html
https://pythonnumericalmethods.studentorg.berkeley.edu/notebooks/chapter22.06-Python-ODE-Solvers.html


• check that page

notes

Self-assessment material

Modelling in Continuous Time - Is this function a solution of this ODE? 1

•

notes
Question 1

Which of the following best describes what it means for a function y(t) to be a
solution of an ODE?

Potential answers:

I: (wrong) It satisfies the ODE for at least one value of t.
II: (correct) It satisfies the ODE for all values of t in its domain.

III: (wrong) It approximately satisfies the ODE within a certain error margin.
IV: (wrong) It satisfies the ODE only at integer values of t.
V: (wrong) I do not know

Solution 1:

A function is a solution of an ODE if it satisfies the equation for all values of t
within its domain. A solution must be valid throughout the considered interval,
not just at isolated points.

Modelling in Continuous Time - Is this function a solution of this ODE? 2



• see the associated solution(s), if compiled with that ones :)

notes
Question 2

What additional information is needed to uniquely determine a solution of an ODE?

Potential answers:

I: (wrong) The function y(t) itself.
II: (correct) An initial condition specifying the value of y at a given time.

III: (wrong) A boundary condition at two different points.
IV: (wrong) The highest-order derivative of y .
V: (wrong) I do not know

Solution 1:

An initial condition provides the necessary information to select a unique solution
from the family of possible solutions to a differential equation. Without it, mul-
tiple solutions may exist. Modelling in Continuous Time - Is this function a solution of this ODE? 3

• see the associated solution(s), if compiled with that ones :)

notes
Question 3

Given the ODE ẏ = y , which of the following functions is a solution?

Potential answers:

I: (wrong) y(t) = t2

II: (correct) y(t) = Cet , where C is a constant.
III: (wrong) y(t) = sin t

IV: (wrong) y(t) = 1
t + 1

V: (wrong) I do not know

Solution 1:

The function y(t) = Cet satisfies the equation since its derivative is also Cet ,
matching the right-hand side of the ODE.

Modelling in Continuous Time - Is this function a solution of this ODE? 4



• see the associated solution(s), if compiled with that ones :)

notes
Question 4

Which of the following differential equations is nonlinear?

Potential answers:

I: (correct) ẏ + 2y = 3
II: (correct) ẏ = y2

III: (correct) ẏ = 3y + 5
IV: (correct) ẏ + sin y = t
V: (wrong) I do not know

Solution 1:

An equation ẏ = f (y) is linear only if f (y) = α(t)y .

Modelling in Continuous Time - Is this function a solution of this ODE? 5

• see the associated solution(s), if compiled with that ones :)

notes
Question 5

What is an equilibrium point of the ODE ẏ = y(1 − y)?

Potential answers:

I: (wrong) y = 2
II: (correct) y = 0 and y = 1

III: (wrong) y = −1

IV: (wrong) y = 1
2

V: (wrong) I do not know

Solution 1:

Equilibrium points occur where ẏ = 0, meaning y(1 − y) = 0. This happens at
y = 0 and y = 1.

Modelling in Continuous Time - Is this function a solution of this ODE? 6



• see the associated solution(s), if compiled with that ones :)

notes
Recap of sub-module “Is this function a solution of this ODE?”

• a function is a solution of an ODE if it satisfies the equation for all values in its
domain

• initial conditions are necessary to uniquely determine a solution

Modelling in Continuous Time - Is this function a solution of this ODE? 7

• the most important remarks from this sub-module are these ones

notes

which type of ODE is this one?

Modelling in Continuous Time - which type of ODE is this one? 1



•

notes
Contents map

developed content units taxonomy levels
linear u1, e1
time invariant u1, e1
autonomous u1, e1

prerequisite content units taxonomy levels
ODE u1, e1

Modelling in Continuous Time - which type of ODE is this one? 2

•

notes
Main ILO of sub-module “which type of ODE is this one?”

Classify an ODE as linear or nonlinear, autonomous or non-autonomous,
time-invariant or time-varying, based on its structural properties

Modelling in Continuous Time - which type of ODE is this one? 3



• by the end of this module you shall be able to do this

notes

linear vs. nonlinear

Modelling in Continuous Time - which type of ODE is this one? 1

•

notes
Definition: f (⋅) is linear iff

• f (x + y) = f (x) + f (y)
• f (αy) = αf (y)

Modelling in Continuous Time - which type of ODE is this one? 2



• this is the classical definition of linearity

notes
Is this function linear?
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• definitely not

notes
Is this function linear?
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• definitely not too, it has to pass through zero

notes
Is this function linear?
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• looking at this graph, we note that these two properties hold
• and this holds only because of linearity. If we are having an affine map, for example, the

second would not hold

notes
Is this function linear?

y

uẏ

https: // www. geogebra. org/ classic/ mmppe6hs

Modelling in Continuous Time - which type of ODE is this one? 6
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• this is linear too

notes

autonomous vs. non-autonomous

Modelling in Continuous Time - which type of ODE is this one? 1

•

notes
Definitions

• autonomous = the dynamics evolve based solely on the system state, e.g.:
• v̇ = −0.3v
• Ṫ = −4(T − 20)
• Lotka-Volterra (as saw before)

• non-autonomous = otherwise (i.e., some other variables matter too), e.g.:
• v̇ = −0.3v + F
• Ṫ = −4(T − u)
• Lotka-Volterra with human intervention

Modelling in Continuous Time - which type of ODE is this one? 2



• the autonomous versions do not have external inputs
• the non-autonomous versions do have some instead

notes

time-invariant vs. time-varying

Modelling in Continuous Time - which type of ODE is this one? 1

•

notes
Is this function time invariant?
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ẏ = ty

Modelling in Continuous Time - which type of ODE is this one? 2



• this function changes with time, so no

notes
“but all the systems are time-varying. . . ”

True, but we care only about time horizons meaningful for the decision process.
Examples:

• the engine of the car will eventually break, but during one single trip its properties
don’t change too much

• the building structure degrades over decades, but for a single night its thermal
properties remain practically constant

Modelling in Continuous Time - which type of ODE is this one? 3

• we care only for a time horizon related to a planning phase

notes
Here no, here you shall consider it time-varying

Modelling in Continuous Time - which type of ODE is this one? 4



• the amount of fuel is consumed changes the mass very much during the mission

notes
Is this function linear?
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Modelling in Continuous Time - which type of ODE is this one? 5

• for every fixed t the function is actually linear. It is thus LTV

notes
LTI ARMA models

Is this LTI (linear + time invariant)?

y (n) = an−1y (n−1) + . . . + a0y + bmu(m) + . . . + b0u ?

Modelling in Continuous Time - which type of ODE is this one? 6



• as before, only a bit more complex

notes
What if we interpret a linear time invariant function as an ODE?

y

ẏ

a

Example:
• y ′(0) = 10↦ y ′(t) = 10 exp(at)1(t)
• y ′′(0) = 7↦ y ′′(t) = 7 exp(at)1(t)

Thus y ′(0) + y ′′(0)↦ y ′(t) + y ′′(t)
Modelling in Continuous Time - which type of ODE is this one? 7

• looking at what we found in the previous module, this holds because the solutions to linear
ODEs are exponentials passing by the initial conditions and whose exponent is always a

• and this holds only because of linearity

notes
Summarizing

Classify an ODE as linear or nonlinear, autonomous or non-autonomous,
time-invariant or time-varying, based on its structural properties

• check the function, and answer accordingly

Modelling in Continuous Time - which type of ODE is this one? 8



• you should now be able to do this, following the pseudo-algorithm in the itemized list

notes

Most important python code for this sub-module

Modelling in Continuous Time - which type of ODE is this one? 1

•

notes
Plotting functions

• https://matplotlib.org/
• https://bokeh.org/

Modelling in Continuous Time - which type of ODE is this one? 2

https://matplotlib.org/
https://bokeh.org/


• the first one you shall know, the second one is a big plus

notes

Self-assessment material

Modelling in Continuous Time - which type of ODE is this one? 1

•

notes
Question 6

Which of the following autonomous systems is nonlinear?

Potential answers:

I: (correct) ẏ = 3y + 5
II: (correct) ẏ = y2 + 3y

III: (correct) ẏ = 2y − 4
IV: (wrong) ẏ = −0.5y
V: (wrong) I do not know

Solution 1:

A differential equation is nonlinear if it includes terms such as y2, sin(y), or ey .
The equation ẏ = y2 + 3y contains a quadratic term, making it nonlinear. The
solutions 3y + 5 and 2y − 4 are affine, and thus nonlinear.Modelling in Continuous Time - which type of ODE is this one? 2



• see the associated solution(s), if compiled with that ones :)

notes
Question 7

Which of the following differential equations is autonomous?

Potential answers:

I: (correct) ẏ = −2y + 5
II: (wrong) ẏ = 3y + sin(t)

III: (wrong) ẏ = ty − 4
IV: (wrong) ẏ = et − y
V: (wrong) I do not know

Solution 1:

A system is autonomous if its dynamics do not explicitly depend on time t. The
equation ẏ = −2y + 5 only depends on y and is therefore autonomous. The other
options include explicit dependence on t. Modelling in Continuous Time - which type of ODE is this one? 3

• see the associated solution(s), if compiled with that ones :)

notes
Question 8

Which of the following equations represents a time-invariant system?

Potential answers:

I: (correct) ẏ = 4y + u
II: (wrong) ẏ = 2ty

III: (wrong) ẏ = sin(t)y
IV: (wrong) ẏ = y + 3t
V: (wrong) I do not know

Solution 1:

A system is time-invariant if its coefficients do not explicitly depend on time.
The equation ẏ = 4y + u meets this criterion, whereas the other options contain
explicit time dependencies. Modelling in Continuous Time - which type of ODE is this one? 4



• see the associated solution(s), if compiled with that ones :)

notes
Question 9

Consider the equation ẏ = −0.3y + (2t)u. How should this system be classified?

Potential answers:

I: (wrong) Linear, autonomous, time-invariant
II: (wrong) Linear, autonomous, time-varying

III: (correct) Linear, non-autonomous, time-varying
IV: (wrong) Nonlinear, non-autonomous, time-varying
V: (wrong) I do not know

Solution 1:

The system is linear because it contains no nonlinear terms in y or in u. It is
non-autonomous due to the explicit dependence on u, and it is time-varying since
the coefficient of u depends on t. Modelling in Continuous Time - which type of ODE is this one? 5

• see the associated solution(s), if compiled with that ones :)

notes
Question 10

Which function represents a linear system?

Potential answers:

I: (wrong) ẏ = y3 + 2y
II: (correct) ẏ = 5y + 3u

III: (wrong) ẏ = sin(y) + u
IV: (wrong) ẏ = ey − u
V: (wrong) I do not know

Solution 1:

A system is linear if it satisfies the superposition principle. The equation ẏ =
5y +3u is linear because it only includes first-degree terms in y and u. The other
options contain nonlinear terms such as y3, sin(y), or ey .Modelling in Continuous Time - which type of ODE is this one? 6



• see the associated solution(s), if compiled with that ones :)

notes
Recap of sub-module “which type of ODE is this one?”

• an ODE can be classified based on its structural properties (linearity, autonomy,
time-invariance)

• linearity requires both additivity and homogeneity
• autonomous systems evolve solely based on their state, while non-autonomous

systems depend on external inputs
• time-invariant systems have dynamics that do not explicitly depend on time, while

time-varying systems do
• graphical representations help in identifying these properties visually

Modelling in Continuous Time - which type of ODE is this one? 7

• the most important remarks from this sub-module are these ones

notes

compute the equilibria of the system

Modelling in Continuous Time - compute the equilibria of the system 1



•

notes
Contents map

developed content units taxonomy levels
equilibrium u1, e1

prerequisite content units taxonomy levels
ODE u1, e1

Modelling in Continuous Time - compute the equilibria of the system 2

•

notes
Main ILO of sub-module “compute the equilibria of the system”

Compute the equilibria of an ODE by solving for stationary points

Modelling in Continuous Time - compute the equilibria of the system 3



• by the end of this module you shall be able to do this

notes
Is this in equilibrium?

Modelling in Continuous Time - compute the equilibria of the system 4

• yes, intuitively

notes
Are these in equilibrium, while falling?

Modelling in Continuous Time - compute the equilibria of the system 5



• no, intuitively

notes
Equilibrium = a trajectory that is constant in time

ẏ(t) = 0

Modelling in Continuous Time - compute the equilibria of the system 6

• the simplest trajectories are that ones that seem simple constant numbers

notes
Example

temperature of a small brick in a very large room whose temperature is 20 degrees:

Ṫ = −0.5(T − 20)

t

y(t)

Modelling in Continuous Time - compute the equilibria of the system 7



• let’s do a practical example of a simple system
• here we can see that starting from any T we ideally tend to go to Ta

• and if we start there we have the derivative equal to zero, thus an equilibrium

notes
What does it mean that this system is in equilibrium from an intuitive
point of view?

Modelling in Continuous Time - compute the equilibria of the system 8

• let’s start with the simplest concept, the one of equilibrium, through a practical example: a
segway is in equilibrium if it is perfectly upright or if it is laying on the floor

• the term equilibrium means, from an intuitive point of view, ’things do not move’, and thus
the trajectories stay constant

notes
What does it mean that this system is in equilibrium from a mathematical
point of view?

equilibrium means ẏ = 0

this implies
yeq, ueq is an equilibrium point iff ẏ = f (yeq, ueq) = 0

i.e., the equilibria of a system are the zeros of f (y , u)

Modelling in Continuous Time - compute the equilibria of the system 9



• ’things do not move’ then mathematically translate into ẏ = 0
• ẏ = 0 means that we are looking for that points that make f zero
• note that “iff” means if and only if

notes
Equilibra as the zeros of f , graphically

Exemplified situation of autonomous single output systems:

−3 −2 −1 1 2

−10

10

y

ẏ

Modelling in Continuous Time - compute the equilibria of the system 10

• so one can see the equilibria from the crossings of f with the ’x axis’ (note that this is a
scalar case, and the “autonomous” case where there is no input u, so a simplified case)

notes
Equilibra as the zeros of f , graphically

Exemplified situation of SISO (single input single output) systems:

y

uẏ

https: // www. geogebra. org/ classic/ mmppe6hs

Modelling in Continuous Time - compute the equilibria of the system 11

https://www.geogebra.org/classic/mmppe6hs


• one can see the equilibria from the crossings of f with the ’yu plane’ in case we have more
dimensions

notes
Equilibra as the zeros of f , graphically

Exemplified situation of automonous multiple output systems:

y1

ẏ1 = f1 (y1, y2)

y2

y1

ẏ2 = f2 (y1, y2)

y2

(remember: yeq, ueq equilibrium iff f (yeq, ueq) = 0, i.e., all the components
simultaneously!)

Modelling in Continuous Time - compute the equilibria of the system 12

• note that if one has more than one y then it must be ẏi = 0 for all the i ’s simultaneously at
the same point

notes

equilibria = extremely important topic in automatic control!

will be analysed in more details later on in this course
and much more extensively in others

(feat. Lyapunov, Krasovskii, La-Salle among others)

Modelling in Continuous Time - compute the equilibria of the system 13



• this module is on ODEs and not on equilibria; however better clarifying that this is an extremely
important thing

notes
Discussion: what are the equilibria in this case?

ẏ = ay + bu (3)

y

uẏ

(y0 = 0, u = 0) is always an equilibrium for these systems!Modelling in Continuous Time - compute the equilibria of the system 14

•
• ẏ = 0, so if a = 0 then any y but it has to be u = 0, if a ≠ 0 then it has to be so that ay +bu = 0
• it is also interesting to note this

notes
Discussion: can we have for this specific ODE an equilibrium if
u ≠ constant?

ẏ = ay + bu (4)

y

uẏ

Modelling in Continuous Time - compute the equilibria of the system 15



• no
•

notes
Another example: a Lotka-Volterra model (≠ real world):

{ ẏrabbits = 0.4 ⋅ yrabbits − 0.5 ⋅ yrabbits ⋅ yfoxes
ẏfoxes = −3 ⋅ yfoxes + 0.7 ⋅ yrabbits ⋅ yfoxes

t

yrabbits, yfoxes

Modelling in Continuous Time - compute the equilibria of the system 16

• this you should be immediately able to find an equilibrium, that is 0,0. The other one there
is a bit of algebra to do but it comes natually

notes
Summarizing

Compute the equilibria of an ODE by solving for stationary points

• put f = 0 and compute the corresponding points. It may be that there is the need
to put all the various inputs u = constant (or disturbances d = constant)

Modelling in Continuous Time - compute the equilibria of the system 17



• you should now be able to do this, following the pseudo-algorithm in the itemized list

notes

Most important python code for this sub-module

Modelling in Continuous Time - compute the equilibria of the system 1

•

notes
Root finding in python

https://pythonnumericalmethods.studentorg.berkeley.edu/notebooks/
chapter19.05-Root-Finding-in-Python.html

Modelling in Continuous Time - compute the equilibria of the system 2

https://pythonnumericalmethods.studentorg.berkeley.edu/notebooks/chapter19.05-Root-Finding-in-Python.html
https://pythonnumericalmethods.studentorg.berkeley.edu/notebooks/chapter19.05-Root-Finding-in-Python.html


• this page explains how to find the zeros

notes

Self-assessment material

Modelling in Continuous Time - compute the equilibria of the system 1

•

notes
Question 11

What is the mathematical definition of an equilibrium point for a dynamical system
ẏ = f (y , u)?

Potential answers:

I: (wrong) A point where f (y , u) is maximized
II: (correct) A point where f (y , u) = 0

III: (wrong) A point where y is always increasing
IV: (wrong) A point where y is always decreasing
V: (wrong) I do not know

Solution 1:

An equilibrium point is defined as a point where the system’s derivative ẏ is zero,
meaning the state remains constant over time. Modelling in Continuous Time - compute the equilibria of the system 2



• see the associated solution(s), if compiled with that ones :)

notes
Question 12

Which of the following statements about equilibrium points is correct?

Potential answers:

I: (wrong) An equilibrium point is always stable
II: (correct) An equilibrium point is where the system’s state does not

change over time
III: (wrong) An equilibrium point is a location where external inputs are

irrelevant
IV: (wrong) An equilibrium point always corresponds to y = 0
V: (wrong) I do not know

Solution 1:

An equilibrium point is defined as a state where the time derivative of the system
is zero, meaning the system does not evolve from that state unless disturbed.
Stability depends on additional conditions.

Modelling in Continuous Time - compute the equilibria of the system 3

• see the associated solution(s), if compiled with that ones :)

notes
Question 13

Graphically, how can equilibrium points be identified for an autonomous system
ẏ = f (y)?

Potential answers:

I: (wrong) By finding where y = 0
II: (correct) By finding the points where f (y) = 0 on the phase plot

III: (wrong) By locating the steepest points of the function f (y)
IV: (wrong) By identifying the points where y reaches its maximum or

minimum values
V: (wrong) I do not know

Solution 1:

Equilibrium points occur where ẏ = f (y) = 0, which correspond to the intersec-
tions of f (y) with the horizontal axis in a phase plot.

Modelling in Continuous Time - compute the equilibria of the system 4



• see the associated solution(s), if compiled with that ones :)

notes
Question 14

Consider the system Ṫ = −0.5(T − 20). What is the equilibrium temperature?

Potential answers:

I: (wrong) T = 0
II: (correct) T = 20

III: (wrong) T = −20
IV: (wrong) T = 40
V: (wrong) I do not know

Solution 1:

Setting Ṫ = 0 gives −0.5(T − 20) = 0, which simplifies to T = 20. This is the
equilibrium point of the system.

Modelling in Continuous Time - compute the equilibria of the system 5

• see the associated solution(s), if compiled with that ones :)

notes
Question 15

For the linear system ẏ = ay + bu, under what condition is (y0, u0) an equilibrium?

Potential answers:

I: (wrong) When a = 0 only
II: (correct) When ay0 + bu0 = 0

III: (wrong) When y0 = 0 and u0 = 0 always
IV: (wrong) When u0 is arbitrary
V: (wrong) I do not know

Solution 1:

To find an equilibrium, set ẏ = 0, leading to ay + bu = 0. Solving for y0 and u0
gives the equilibrium condition.

Modelling in Continuous Time - compute the equilibria of the system 6



• see the associated solution(s), if compiled with that ones :)

notes
Question 16

If we have an autonomous time-varying ODE, can we have equilibria?

Potential answers:

I: (wrong) No, time-variation always prevents equilibria.
II: (correct) Yes, equilibria can exist if the system allows constant solutions.

III: (wrong) Only if the system is also linear.
IV: (wrong) Yes, but only if the system is also periodic.
V: (wrong) I do not know

Solution 1:

Equilibria exist when the derivative of the state variables is zero. Even though
the system is time-varying, there can still be points where the vector field is zero,
leading to equilibrium. For example, we may have ẏ = ty . When y = 0 we have
an equilibrium anyway.

Modelling in Continuous Time - compute the equilibria of the system 7

• see the associated solution(s), if compiled with that ones :)

notes
Question 17

Can we have dynamical systems that do not have any equilibria?

Potential answers:

I: (wrong) No, every system has at least one equilibrium.
II: (correct) Yes, with no fixed points may lack equilibria.

III: (wrong) Only non-autonomous systems can lack equilibria.
IV: (wrong) No, because every system must have at least a trivial equilibrium.
V: (wrong) I do not know

Solution 1:

Very simple example: ẏ = 1.

Modelling in Continuous Time - compute the equilibria of the system 8



• see the associated solution(s), if compiled with that ones :)

notes
Question 18

If we have a non-autonomous ODE, can we have equilibria if the input is always
changing, e.g., u = sin(t)?

Potential answers:

I: (wrong) Yes, the input does not affect equilibrium conditions.
II: (wrong) No, because a changing input continuously affects system states.

III: (wrong) Only if the input has a zero mean.
IV: (wrong) Yes, but only if the system is linear.
V: (correct) Yes, and the system does not need to be linear.
VI: (wrong) I do not know

Solution 1:

A simple example: ẏ = yu. For y = 0 we have for sure an equilibrium independently
of u.

Modelling in Continuous Time - compute the equilibria of the system 9

• see the associated solution(s), if compiled with that ones :)

notes
Question 19

If we have a non-autonomous LTI ODE, can we have equilibria if the input is always
changing, e.g., u = sin(t)?

Potential answers:

I: (wrong) Yes, because LTI systems always have equilibria.
II: (correct) No, because the continuously varying input prevents a steady

state.
III: (wrong) Only if the system has no damping.
IV: (wrong) Yes, but only if the input is periodic.
V: (wrong) I do not know

Solution 1:

For an LTI system, equilibrium requires all derivatives to be zero. A continuously
varying input like u = sin(t) forces the system to evolve dynamically, preventing
equilibrium.

Modelling in Continuous Time - compute the equilibria of the system 10



• see the associated solution(s), if compiled with that ones :)

notes
Recap of sub-module “compute the equilibria of the system”

• Equilibria in dynamical systems correspond to points where the system’s state
does not change over time.

• Autonomous time-varying ODEs can have equilibria, but their location may vary
with time.

• Some dynamical systems may not have equilibria, particularly if they involve
unbounded growth.

• Non-autonomous LTI ODEs can have equilibria only if the input u(t) remains
constant over time.

Modelling in Continuous Time - compute the equilibria of the system 11

• the most important remarks from this sub-module are these ones

notes

building and interpreting phase portraits

Modelling in Continuous Time - building and interpreting phase portraits 1



•

notes
Contents map

developed content units taxonomy levels
phase portrait u1, e1

prerequisite content units taxonomy levels
ODE u1, e1

Modelling in Continuous Time - building and interpreting phase portraits 2

•

notes
Main ILO of sub-module “building and interpreting phase portraits”

Construct and interpret phase portraits of first- and second-
order autonomous ODEs using qualitative analysis techniques

Modelling in Continuous Time - building and interpreting phase portraits 3



• by the end of this module you shall be able to do this

notes
Starting with an example: a Lotka-Volterra model (≠ real world):

{ ẏrabbits = 0.4 ⋅ yrabbits − 0.5 ⋅ yrabbits ⋅ yfoxes
ẏfoxes = −3 ⋅ yfoxes + 0.7 ⋅ yrabbits ⋅ yfoxes

yrabbits

yfoxes

Modelling in Continuous Time - building and interpreting phase portraits 4

• with this example we build things graphically, best to watch the video of the module

notes
The result, if we were plotting everything

{ ẏrabbits = 0.4 ⋅ yrabbits − 0.5 ⋅ yrabbits ⋅ yfoxes
ẏfoxes = −3 ⋅ yfoxes + 0.7 ⋅ yrabbits ⋅ yfoxes

Modelling in Continuous Time - building and interpreting phase portraits 5



• if we were doing things graphically by hand we would eventually get this

notes
Phase Portrait = a graphical representation of the trajectories of a
dynamical system in the state space

Modelling in Continuous Time - building and interpreting phase portraits 6

• A phase portrait provides insight into the qualitative behavior of a system without requiring
explicit solutions.

• It helps visualize equilibria, stability, and the general flow of solutions in state space.

notes
Which system is this one?

Modelling in Continuous Time - building and interpreting phase portraits 7



• pendulum with friction

notes
And this one?

Modelling in Continuous Time - building and interpreting phase portraits 8

• pendulum without friction

notes
Phase Portraits for first-order ODEs

−3 −2 −1 1 2

−10

10

y

ẏ

t

y(t)

drawing the phase portrait as a 2-D thing in this case is a big error

Modelling in Continuous Time - building and interpreting phase portraits 9



• The phase portrait consists of a one-dimensional state space (the y -axis).
• Equilibrium points are found by setting f (y) = 0.
• The sign of f (y) determines the direction of motion.

notes
Another example: ẏ = y(1 − y)

−0.5 0.5 1 1.5

−0.6

−0.4

−0.2

0.2
y

ẏ

t

y(t)

• equilibria: y = 0 and y = 1
• if y < 0 or y > 1, ẏ is negative (flow left)
• if 0 < y < 1, ẏ is positive (flow right)

Modelling in Continuous Time - building and interpreting phase portraits 10

• The stability of equilibrium points can be determined by the sign of f (x).
• x = 0 is unstable, x = 1 is stable.

notes
Interpreting Phase Portraits

• equilibria: where trajectories do not move
• limit cycles: closed trajectories indicating periodic behavior

Modelling in Continuous Time - building and interpreting phase portraits 11



• Understanding phase portraits helps predict long-term system behavior.
• Nonlinear systems may exhibit complex structures like attractors or chaotic dynamics.

notes
Interpreting Phase Portraits

• equilibria: where trajectories do not move
• limit cycles: closed trajectories indicating periodic behavior

Modelling in Continuous Time - building and interpreting phase portraits 12

• Understanding phase portraits helps predict long-term system behavior.
• Nonlinear systems may exhibit complex structures like attractors or chaotic dynamics.

notes
Interpreting Phase Portraits

• equilibria: where trajectories do not move
• limit cycles: closed trajectories indicating periodic behavior

Modelling in Continuous Time - building and interpreting phase portraits 13



• Understanding phase portraits helps predict long-term system behavior.
• Nonlinear systems may exhibit complex structures like attractors or chaotic dynamics.

notes
Interpreting Phase Portraits

• equilibria: where trajectories do not move
• limit cycles: closed trajectories indicating periodic behavior

Modelling in Continuous Time - building and interpreting phase portraits 14

• Understanding phase portraits helps predict long-term system behavior.
• Nonlinear systems may exhibit complex structures like attractors or chaotic dynamics.

notes
Interpreting Phase Portraits

• equilibria: where trajectories do not move
• limit cycles: closed trajectories indicating periodic behavior

Modelling in Continuous Time - building and interpreting phase portraits 15



• Understanding phase portraits helps predict long-term system behavior.
• Nonlinear systems may exhibit complex structures like attractors or chaotic dynamics.

notes
Summarizing

Construct and interpret phase portraits of first- and second-
order autonomous ODEs using qualitative analysis techniques

• do the plots using some opportune code
• have the domain expertise to be able to interpret why the trajectories do what

they do

Modelling in Continuous Time - building and interpreting phase portraits 16

• you should now be able to do this, following the pseudo-algorithm in the itemized list

notes

Most important python code for this sub-module

Modelling in Continuous Time - building and interpreting phase portraits 1



•

notes
Tutorial on how to plot phase portraits

https://aleksandarhaber.com/
phase-portraits-of-state-space-models-and-differential-equations-in-python/

Modelling in Continuous Time - building and interpreting phase portraits 2

• that tutorial is very well made, check it

notes

Self-assessment material

Modelling in Continuous Time - building and interpreting phase portraits 1

https://aleksandarhaber.com/phase-portraits-of-state-space-models-and-differential-equations-in-python/
https://aleksandarhaber.com/phase-portraits-of-state-space-models-and-differential-equations-in-python/


•

notes
Question 20

What is the primary purpose of a phase portrait?

Potential answers:

I: (wrong) To find the exact numerical solution of a system
II: (correct) To visualize the qualitative behavior of a dynamical system

III: (wrong) To approximate the integral of a function
IV: (wrong) To determine the frequency response of a system
V: (wrong) I do not know

Solution 1:

A phase portrait is a graphical representation of the trajectories of a system in
state space, giving insight into equilibrium points, stability, and system behavior
without solving the equations explicitly. Modelling in Continuous Time - building and interpreting phase portraits 2

• see the associated solution(s), if compiled with that ones :)

notes
Question 21

How do you determine equilibrium points in a phase portrait of a first-order system
ẏ = f (y)?

Potential answers:

I: (wrong) By solving ẏ = 0 for all values of t
II: (correct) By solving f (y) = 0 for y

III: (wrong) By integrating f (y) over time
IV: (wrong) By setting f (y) to a constant value
V: (wrong) I do not know

Solution 1:

Equilibrium points are the values of y where ẏ = f (y) = 0. These are points
where the system remains at rest if not perturbed.Modelling in Continuous Time - building and interpreting phase portraits 3



• see the associated solution(s), if compiled with that ones :)

notes
Question 22

Which of the following best describes the phase portrait of the system ẏ = y(1 − y)?

Potential answers:

I: (wrong) It consists of a single trajectory with no equilibrium points
II: (correct) It has two equilibrium points at y = 0 and y = 1, with flow

directions determined by the sign of f (y)
III: (wrong) It has infinitely many equilibrium points
IV: (wrong) It has no equilibrium points and exhibits oscillatory behavior
V: (wrong) I do not know

Solution 1:

The function f (y) = y(1 − y) has two roots at y = 0 and y = 1, which are the
equilibrium points. The direction of flow depends on the sign of f (y).Modelling in Continuous Time - building and interpreting phase portraits 4

• see the associated solution(s), if compiled with that ones :)

notes
Question 23

What distinguishes the phase portrait of a second-order system from a first-order
system?

Potential answers:

I: (wrong) Second-order phase portraits only have one equilibrium point
II: (correct) Second-order phase portraits require a two-dimensional state

space (e.g., x vs. ẋ)
III: (wrong) First-order systems can have limit cycles, while second-order

systems cannot
IV: (wrong) Phase portraits for second-order systems do not contain infor-

mation about stability
V: (wrong) I do not know

Solution 1:

Second-order ODEs require a two-dimensional phase space, where each point
represents both a position variable and its derivative. This allows visualization of
complex behaviors such as oscillations.

Modelling in Continuous Time - building and interpreting phase portraits 5



• see the associated solution(s), if compiled with that ones :)

notes
Question 24

Which of the following statements about phase portraits of nonlinear systems is
correct?

Potential answers:

I: (wrong) Nonlinear systems always have a single equilibrium point
II: (wrong) Nonlinear phase portraits can be analyzed only by solving the

system numerically
III: (correct) Nonlinear phase portraits may exhibit equilibrium points, limit

cycles, and chaotic behavior
IV: (wrong) Nonlinear phase portraits always resemble those of linear systems

for small perturbations
V: (wrong) I do not know

Solution 1:

Nonlinear systems can have equilibrium points, periodic limit cycles, or even
chaotic behavior depending on the dynamics. Their phase portraits often exhibit
richer and more complex structures than linear systems.

Modelling in Continuous Time - building and interpreting phase portraits 6

• see the associated solution(s), if compiled with that ones :)

notes
Recap of sub-module “building and interpreting phase portraits”

• A phase portrait is a graphical representation of a dynamical systems trajectories
in state space.

• Phase portraits provide qualitative insight into system behavior without requiring
explicit solutions.

• First-order systems have a one-dimensional state space, while second-order
systems require two dimensions, etc.

Modelling in Continuous Time - building and interpreting phase portraits 7



• the most important remarks from this sub-module are these ones

notes

what is control

Modelling in Continuous Time - what is control 1

•

notes
Contents map

developed content units taxonomy levels
feedforward u1, e1
feedback u1, e1
model based control u1, e1
model free control u1, e1

prerequisite content units taxonomy levels
ODE u1, e1

Modelling in Continuous Time - what is control 2



•

notes
Main ILO of sub-module “what is control”

Interpret automatic control as an oppor-
tune operation on the dynamics of a system

Modelling in Continuous Time - what is control 3

• by the end of this module you shall be able to do this

notes
Example: speed control

main parameters:
• m mass of the car
• b friction coefficient
• g gravity coefficient

Modelling in Continuous Time - what is control 4



• in this example we shall make the car keep a target speed independently of the inclination of
the road

notes
A sufficiently accurate model for the purpose

from Newton laws: mẍ = −bẋ + u −mg sin(d)

control objective: minimize ∣y(t) − r(t)∣ with r(t) = wished speed

Modelling in Continuous Time - what is control 5

• and (trust me) this is a good enough model for the purpose of designing a control law

notes
Feedforward control: “I think I know which d(t) will happen, and I
compensate for that”

r controller plant

d

yu

u(t) = something that compensates that d̂(t)

Modelling in Continuous Time - what is control 6



• assuming we have an estimate / forecast d̂(t), knowing the model we know how big we need
u to compensate that disturbance

notes
Open loop / feedforward control: “I think I know which d(t) will happen,
and I compensate for that”

u(t) = something that compensates that d̂(t)

problem: if d̂ − d is big, then we expect y − r to be big too, and we won’t be able to
note this!

Modelling in Continuous Time - what is control 7

• of course pure feedforward / open loop control may be problematic, especially for the fact
that there won’t be ways to detect if there are big errors and react to them

notes
Note that open loop ≠ feedforward

Open loop:

r controller plant

d

yu

Feedforward:

r controller plant

d

yu

Modelling in Continuous Time - what is control 8



• in summary, open-loop control works without feedback or adjustment based on the system’s
state, while feedforward control adjusts proactively based on expected disturbances or changes.
Both are reactive in the sense that they dont correct in real-time based on the output, but
feedforward aims to address known disturbances before they affect the system

• the differences will be more clear as we go on with the course

notes
Question 25

Open loop / feedforward control is so simple and naïve that no system in the world
uses it

Potential answers:

I: (wrong) true
II: (correct) false

III: (wrong) I do not know

Solution 1:

Absolutely false! Open-loop controllers are simple, cost-effective, and require
no feedback, making them easy to design and implement. They are fast since
they dont need to process sensor data, making them suitable for time-sensitive
applications. However, they are less accurate and cannot correct for disturbances
or system variations. Examples include a washing machine running a fixed cycle,
a microwave heating for a set time, a traffic light operating on a fixed schedule,
an irrigation system with a timer, and an electric kettle that shuts off based on
time rather than temperature.

Modelling in Continuous Time - what is control 9

• see the associated solution(s), if compiled with that ones :)

notes
Feedback control: “I measure something, and depending on what I
measure I take a decision”

r controller plant

d

y

filter

+ e u
−

(= designing a controller, i.e., in this case
designing a function that maps the signal e into the signal u)

Modelling in Continuous Time - what is control 10



• note that this is again the block scheme of feedback control, that is NOT the unique way of
doing control (there is also ’feedforward’, for example)

notes
Main dichotomy on how to build a feedback controller

• model free (e.g., PIDs)
• model based (e.g., MPCs)

Modelling in Continuous Time - what is control 11

• actually there are more details here you will discover while studying control systems. For now
consider though just this dicothomy

notes
Crash-slide on PIDs

r(t) ∑ Ki ∫
t

−∞

e(τ)dτ

Kpe(t)

Kd ė(t)

∑ system y(t)+ e(t)
+

+
+−

implicit assumption: we can measure y(t)! (see also
https://www.youtube.com/watch?v=UR0hOmjaHp0!)

Modelling in Continuous Time - what is control 12

https://www.youtube.com/watch?v=UR0hOmjaHp0


• you will see this controller in big details in the next courses, for now let’s only get some
intuitions

• important thing: we need sensors and processing units, to be able to implement this. This
means that we need to allocate money for buying and installing this piece of hardware - may
be more expensive than open loop control

notes
PID for the speed control task

u(t) = Kp error right now
+Ki sum of all past errors
+Kd current tendency of the error

e(t), u(t)

t

Modelling in Continuous Time - what is control 13

• so from an intuitive perspective it is good to keep in mind that each component has a certain
meaning

• tuning PIDs is an art. A nice book on this is this: https://link.springer.com/book/10.
1007/1-84628-586-0

notes
Question 26

A PID is guaranteed to work well

Potential answers:

I: (wrong) yes, always
II: (wrong) no, never

III: (correct) no, it depends on how well tuned it is
IV: (wrong) I do not know

Solution 1:

A PID controller is not guaranteed to work well in all cases; its performance de-
pends on proper tuning. Poorly tuned PID controllers can lead to instability, slow
response, or excessive oscillations. The three gains (proportional (Kp), integral
(Ki), and derivative (Kd)) must be adjusted based on the system dynamics.
For example, if Kp is too high, the system may oscillate or become unstable. If
Ki is too high, the system may suffer from overshoot and integral windup. If Kd
is too high, the system may become too sensitive to noise.
Tuning methods like Ziegler-Nichols, Cohen-Coon, or optimization-based ap-
proaches help in achieving a well-performing PID controller. Therefore, the cor-
rect answer is: *no, it depends on how well tuned it is*.

Modelling in Continuous Time - what is control 14

https://link.springer.com/book/10.1007/1-84628-586-0
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• see the associated solution(s), if compiled with that ones :)

notes
Crash-slide on MPCs

t

signals measured past y wished future y potential u, and corresponding forecasted y best u = “best” forecasted y execute u(now)measure, and repeat

now − 4 now − 3 now − 2 now − 1 now + 1 now + 2 now + 3 now + 4now

prediction horizon

Modelling in Continuous Time - what is control 15

• see also https://www.youtube.com/watch?v=UR0hOmjaHp0!

notes
Question 27

A MPC is guaranteed to work well

Potential answers:

I: (wrong) yes, always
II: (wrong) no, never

III: (correct) no, it depends on how good the model is
IV: (wrong) I do not know

Solution 1:

Model Predictive Control (MPC) is not guaranteed to work well in all cases;
its performance depends on how accurately the model represents the real system.
Since MPC relies on predicting future system behavior using a model, inaccuracies
in the model can lead to poor performance or instability.
Key factors affecting MPC performance:

• Model Accuracy: If the model does not capture the system dynamics well,
predictions will be incorrect, leading to suboptimal control actions.

• Computation Time: MPC solves an optimization problem at every step. If
computations take too long, real-time implementation may fail.

• Disturbances & Uncertainty: If disturbances or modeling errors are not
properly handled (e.g., via robust or adaptive MPC), performance may de-
grade.

Tuning aspects such as the prediction horizon, control horizon, and cost function

weights also influence performance.
Thus, the correct answer is: no, it depends on how good the model is.

Modelling in Continuous Time - what is control 16
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• see the associated solution(s), if compiled with that ones :)

notes
Question 28

Is MPC guaranteed to work better than PID?

Potential answers:

I: (wrong) yes, always
II: (wrong) no, never

III: (correct) no, it actually depends on the situation
IV: (wrong) I do not know

Solution 1:

MPC is not always guaranteed to work better than PID; its effectiveness depends
on the specific system and control objectives. While MPC offers advantages such
as constraint handling, predictive capabilities, and optimization-based control, it
also has drawbacks compared to PID.
Key factors influencing the choice between MPC and PID:

• System Complexity: PID works well for simple, well-modeled systems, while
MPC is better suited for multivariable or highly constrained systems.

• Computational Resources: PID is computationally inexpensive and easy to
implement, whereas MPC requires solving an optimization problem at each
step, making it more demanding.

• Tuning Effort: While PID requires gain tuning, MPC requires model iden-
tification and tuning of multiple parameters, which can be complex.

• Disturbances and Uncertainty: MPC can anticipate and compensate for

disturbances better in some cases, but if the model is inaccurate, it may
perform worse than a well-tuned PID.

Thus, the correct answer is: no, it actually depends on the situation.

Modelling in Continuous Time - what is control 17

• see the associated solution(s), if compiled with that ones :)

notes
Question 29

Is closed loop control guaranteed to work better than open loop control?

Potential answers:

I: (wrong) yes, always
II: (wrong) no, never

III: (correct) no, it actually depends on the situation
IV: (wrong) I do not know

Solution 1:

Closed-loop control is not always guaranteed to work better than open-loop con-
trol; the effectiveness of each approach depends on the specific application and
system characteristics. While closed-loop control provides feedback and can cor-
rect errors, open-loop control can be sufficient or even preferable in certain sce-
narios.
Key factors influencing the choice between open-loop and closed-loop control:

• System Variability: Closed-loop control is beneficial when the system is
subject to disturbances or uncertainties, as it can adjust in real time. How-
ever, for predictable systems with no disturbances, open-loop control may
be simpler and more efficient.

• Complexity and Cost: Closed-loop systems require sensors, controllers,
and actuators, increasing cost and complexity, whereas open-loop systems
are often simpler and cheaper.

• Response Time: Open-loop control can be faster since it does not rely
on feedback processing, making it suitable for high-speed operations where
corrections are unnecessary.

• Energy and Stability Considerations: Some closed-loop systems may in-
troduce oscillations or instability if not properly designed, while open-loop
systems avoid this risk by operating in a predefined manner.

Thus, the correct answer is: no, it actually depends on the situation.

Modelling in Continuous Time - what is control 18



• see the associated solution(s), if compiled with that ones :)

notes
But eventually, what is control?

an algorithm to compute u(t) starting from the available information

y

u
ẏ

Modelling in Continuous Time - what is control 19

• and there are many different algorithms to do so. A goal that you may put to yourself in
these years is to arrive at knowing a sufficient number of them, and in details enough to have
a feeling of the pros and cons, so to choose the right approach depending on the needs

notes
A final note: in practice it is a good choice to combine both feedback and
feedforward actions

r controller plant

d

yu

Modelling in Continuous Time - what is control 20



• this block scheme shows that there is both a feedback and a feedforward action

notes
Summarizing

Interpret automatic control as an oppor-
tune operation on the dynamics of a system

• think at what feedforward and feedback mean
• think at the fact that essentially they are ways of computing u, and that that u

enters the dynamics of the system

Modelling in Continuous Time - what is control 21

• you should now be able to do this, following the pseudo-algorithm in the itemized list

notes

Most important python code for this sub-module

Modelling in Continuous Time - what is control 1



•

notes
Note: going through everything here would take months - just be aware of
their existence and start playing with them

• https://python-control.readthedocs.io/en/0.10.1/
• https://pypi.org/project/simple-pid/
• https://www.do-mpc.com/en/latest/

Modelling in Continuous Time - what is control 2

• these libraries all relate to what we saw in this module; watch out though that

notes

Self-assessment material

Modelling in Continuous Time - what is control 1
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•

notes
Question 30

PID control requires a model of the system to function correctly.

Potential answers:

I: (wrong) yes, always
II: (correct) no, it works without a model

III: (wrong) I do not know

Solution 1:

A PID controller works without requiring a model of the system. Instead, it uses
feedback from the systems output to adjust the control input. The three pa-
rametersproportional (Kp), integral (Ki), and derivative (Kd)are tuned based on
system behavior, but no explicit system model is necessary. This makes PID con-
trollers simple and widely applicable, even in systems where modeling is difficult
or not feasible.

Modelling in Continuous Time - what is control 2

• see the associated solution(s), if compiled with that ones :)

notes
Question 31

Model Predictive Control (MPC) can only be applied when the model is perfect.

Potential answers:

I: (wrong) yes, the model must be perfect
II: (correct) no, it works with approximate models

III: (wrong) I do not know

Solution 1:

MPC does not require a perfect model, though its performance depends on how
accurately the model represents the system. If the model is approximate, the
controller may still work well, but the performance may degrade if the model is
too far from reality. In practice, methods like robust or adaptive MPC are used
to handle model inaccuracies and disturbances. Modelling in Continuous Time - what is control 3



• see the associated solution(s), if compiled with that ones :)

notes
Question 32

Feedforward control is generally better than feedback control for handling disturbances.

Potential answers:

I: (wrong) yes, feedforward is always better
II: (correct) no, feedback control is better for disturbances

III: (wrong) I do not know

Solution 1:

Feedforward control can be effective when disturbances are predictable, as it
compensates for them proactively. However, feedback control is generally better
for handling unexpected disturbances or system changes because it can adjust
in real-time based on the system’s output. Feedback ensures that the system
can respond to unmeasured or unforeseen variations, making it more robust in
dynamic environments.

Modelling in Continuous Time - what is control 4

• see the associated solution(s), if compiled with that ones :)

notes
Question 33

Open-loop control is more reliable than closed-loop control in all situations.

Potential answers:

I: (wrong) yes, open-loop is always more reliable
II: (correct) no, it depends on the system and application

III: (wrong) I do not know

Solution 1:

Open-loop control is simpler and can be more reliable in cases where the system is
predictable and not subject to disturbances. However, closed-loop control is more
reliable when disturbances or system variations are present, as it adjusts based
on feedback. The choice between open-loop and closed-loop control depends on
the specific system dynamics, complexity, and performance requirements.Modelling in Continuous Time - what is control 5



• see the associated solution(s), if compiled with that ones :)

notes
Question 34

PID controllers are always preferable to MPC in terms of performance.

Potential answers:

I: (wrong) yes, PID always outperforms MPC
II: (correct) no, it depends on the system and objectives

III: (wrong) I do not know

Solution 1:

PID controllers are well-suited for simple systems with few inputs and outputs,
especially when the system is well-understood and not subject to significant distur-
bances. However, MPC can be more powerful in handling complex, multivariable
systems with constraints. MPC is capable of optimizing system behavior over a
time horizon, making it suitable for systems where PID controllers might not be
able to effectively manage multiple interacting variables or constraints. There-
fore, the choice depends on the system’s complexity and control objectives.

Modelling in Continuous Time - what is control 6

• see the associated solution(s), if compiled with that ones :)

notes
Recap of sub-module “what is control”

• designing a controller means designing an algorithm that transforms information
into decision

• there are several types of controllers, each with pros and cons
• taking decisions (i.e., actuating u) means modifying the dynamics of the system

Modelling in Continuous Time - what is control 7



• the most important remarks from this sub-module are these ones

notes

how to linearize an ODE

Modelling in Continuous Time - how to linearize an ODE 1

•

notes
Contents map

developed content units taxonomy levels
linearization u1, e1

prerequisite content units taxonomy levels
ODE u1, e1

Modelling in Continuous Time - how to linearize an ODE 2



•

notes
Main ILO of sub-module “how to linearize an ODE”

Linearize a nonlinear ODE around an equilibrium point

Modelling in Continuous Time - how to linearize an ODE 3

• by the end of this module you shall be able to do this

notes
The path towards linearizing a model

• what does linearizing a function mean?
• what does linearizing a model mean?
• how shall we linearize a model?

Modelling in Continuous Time - how to linearize an ODE 4



• so now we will enter into the new content from this module
• we will proceed following this mental order in answering questions

notes
What does linearizing a scalar function mean?

f (y) = y2 − 2y − 3

y-1 3y

f (y)

f ′ (y)

f (y) ≈ f (y) + ∂f
∂y
∣
y
(y − y)

(but the approximation is valid only close to the linearization point)
Modelling in Continuous Time - how to linearize an ODE 5

• graphically, it means substituting the function with an approximation that is a valid one in
the neighborhood of a specific point

• in formulas we get this, that should be well known
• try to do by yourself the example of linearizing this function around y = 1. You should get

f (y) = −4 (constant)

notes
Obvious requirement
(but sometimes people forget about it . . . )

to compute the approximation

f (y) ≈ f (y) + ∂f
∂y
∣
y
(y − y)

the derivative of f at y must be defined. (notation: f ∈ Cn means that f has all its
derivatives up to order n defined in R. f ∈ Cn(X ) means defined in X ⊆ R)

Modelling in Continuous Time - how to linearize an ODE 6



• in other words, you cannot linearize a function on a discontinuity point
• note: if you did not see this notation keep it in mind

notes
What does linearizing a vectorial function mean?

f ∶ Rn ↦ Rm, f ∈ C1 enables computing f (y) ≈ f (y0) + ∇y f ∣y0
(y − y0)

linearize Ô⇒ approximate each component!

Discussion: then ∇y f ∣y0
must be a matrix. Of which dimensions?

Modelling in Continuous Time - how to linearize an ODE 7

• if we have a vectorial function we can think that this means linearizing each component
• f (y0) transforms a n-dimensional vector to a m-dimensional one. (y − y0) is a n-dimensional

vector, thus that matrix must be m rows and n columns

notes
Example: linearize f around y0

f (y(t)) = [sin (y1(t)) + cos (y2(t))
exp (y1(t)y2(t))

] y0 = y(0) = [0, π]

Modelling in Continuous Time - how to linearize an ODE 8



• if you do not feel able of doing this linearization then you should definitely refresh how to do
derivatives

• The linearization involves computing the Jacobian matrix of f at y0. The Jacobian matrix is
given by:

J =

⎡⎢⎢⎢⎢⎢⎢⎣

∂

∂y1
(sin(y1) + cos(y2))

∂

∂y2
(sin(y1) + cos(y2))

∂

∂y1
exp(y1y2)

∂

∂y2
exp(y1y2)

⎤⎥⎥⎥⎥⎥⎥⎦

.

Evaluating the Jacobian at y0 = [0, π] gives

J(y0) = [
cos(0) − sin(π)

π ⋅ exp(0) 0 ] = [1 0
π 0] .

Thus, the linearized system around y0 is

J(y0)∆y

notes
And what if the vectorial function depends on more than one variable?

Assuming f differentiable in y0, u0,

f (y , u) ≈ f (y0, u0) + ∇y f ∣y0,u0
(y − y0) + ∇uf ∣y0,u0

(u − u0)

with both ∇y f ∣y0,u0
and ∇uf ∣y0,u0

matrices of opportune size. Alternative notation:

f (y , u) ≈ f (y0, u0) +∇f (y , u) ∣
y0,u0
[∆y
∆u
]

Modelling in Continuous Time - how to linearize an ODE 9

• if we have more variables the same rules apply, just that we have more elements in the stack
• to save space it is convenient to write things in this way. This means defining

notes
Graphical example with a R2

↦ R function

f (y , u) ≈ f (y0, u0) +∇f (y , u) ∣
y0,u0
[∆x
∆u
]

y

u

f (y , u)

if f = [f1, f2] then have two distinct plots, but the concept is the same
Modelling in Continuous Time - how to linearize an ODE 10



• see the plotting in the video of the course
• and if you got the point then this last sentence is obvious. If it does not seem obvious then

this is a sign that actually better for you if you re-go through the material

notes
Thus, linearization = stopping the Taylor series at order one

f ∈ CM (R) Ô⇒ f (y) ≈
M
∑
m=0

f (m)(y0)
m!

(y − y0)m

multivariable extension = less neat formulas, but the concept is the same. The most

important case for our purposes:

f ∈ C1 (Rn,Rm) Ô⇒ f (y , u) ≈ f (y0, u0) + ∇y f ∣y0
(y − y0) + ∇uf ∣u0

(u − u0)

Modelling in Continuous Time - how to linearize an ODE 11

• actually what we are doing is using a Taylor expansion, and stopping at order one
• and what we eventually have is this thing

notes
What does linearizing an ODE mean?

ẏ = f (y , u) ≈ ˙̃y = Aỹ +Bũ

linearize Ô⇒ approximate the dynamics!

Modelling in Continuous Time - how to linearize an ODE 12



• eventually if we think that a state-space model is a couple of functions, linearizing it means
linearizing these functions

• as for the solution to the question, the fact is that u is the input, and in a simulation we may
think that this variable is fixed. However if u is computed in closed loop, then the model
itself will affect this variable, if the controller is model based. In this case we should write ũ
in the approximated model

notes
Discussion: what is the simplest way to make this linear?

ẏ = ay + bu2/3

Another discussion: can we apply the same “linearization trick” to ẏ = a√y + bu?

Modelling in Continuous Time - how to linearize an ODE 13

• note that sometimes one may do some simple tricks to do a linearization that is actuall a
non-linearization

• for example here we may say that u(t) = u(t)2/3, and get a linear model in u
• this basically would say just putting a nonlinear function in the block scheme, and with this

“renaming” we may use linear control theory for this nonlinear system
• this trick though does not work always. It works only if we have the autonomous version of

the system that is linear, and then the inputs appear as a sum of independent inputs each
with its own nonlinearity

notes
Discussion: why do we linearize nonlinear systems?

Modelling in Continuous Time - how to linearize an ODE 14



• remember: we linearize a model because it may be more meaningful to do linear control than
nonlinear control

• moreover in any case the linear approximation may be a good description, if the curvature of
f is not too big and if we consider a sufficiently small neighborhood of the linearization point

notes
Discussion: where do we linearize nonlinear systems?

Modelling in Continuous Time - how to linearize an ODE 15

• it has no sense to linearize in a point that is not an equilibrium, because we would then
consider a system for which the trajectories by default go away from the neighborhood where
the approximation is meaningful

• moreover we want to do controllers typically around plant operation points, and operation
points tend to be equilibria

• formally thus one may linearize everywhere (assuming that the maps are differentiable in that
points) but in practice one does linearizations only around equilibria

notes
Linearization procedure - continuous time systems

(yeq, ueq) equilibrium Ô⇒ f (yeq, ueq) = 0

Procedure (assuming that the Taylor expansion exists):
• consider y = yeq +∆y , and u = ueq +∆u
• compute

f (y , u) ≈ f (y0, u0) + ∇y f ∣y0
(y − y0) + ∇uf ∣u0

(u − u0)

setting though y0 = yeq

Ô⇒
∂ (yeq +∆y)

∂t
≈ f (yeq, ueq) +∇f (y , u) ∣

yeq,ueq
[∆y
∆u
]

note then that
∂ (yeq +∆y)

∂t
=∆ẏ and that f (yeq, ueq) = 0

Modelling in Continuous Time - how to linearize an ODE 16



• to see the whole procedure, let’s start considering that by definition this happens
• then one may compute this
• since we are working around the equilibrium, this happens
• but then given that yeq is constant and given the fact that we are on an equilibrium, this

follows

notes
Linearization procedure - continuous time systems

(yeq, ueq) equilibrium Ô⇒

∆ẏ ≈ ∇y f (y , u) ∣
yeq,ueq

∆y +∇uf (y , u) ∣
yeq,ueq

∆u

and, since
• the two ∇’s are matrices, and
• this is an approximate dynamics,

it follows that the approximated system is

∆ ˙̃y = A∆ỹ +B∆u

Modelling in Continuous Time - how to linearize an ODE 17

• summarizing, we get this
• note that we are thus getting some equations that refer to an approximated system, and thus

we should use different letters to indicate the different variables

notes
What does this mean graphically?

ẏ = f (y , u) vs. ∆ ˙̃y = A∆ỹ +B∆ũ

y

f

u

Modelling in Continuous Time - how to linearize an ODE 18



• see the drawings made during the video of the lesson

notes
A from-start-to-end example: the pendulum

`

θ

First step: equations of motion:
• gravity: Fg = −mg sin(θ)
• friction: Ff = −f `θ̇

• input torque: Fu = u/`

resulting dynamics: m`θ̈ = −mg sin(θ) − f `θ̇ + u
`

Modelling in Continuous Time - how to linearize an ODE 19

• let’s consider a whole example, from start to end
• let’s consider the pendulum example
• the system dynamics are these ones
• we can see that the system is nonlinear

notes
First step: transforming this in a state space system

`

θ

thus from
m`θ̈ = −mg sin(θ) − f `θ̇ + u

`

into
ẏ1 = y2

ẏ2 = −
g
`

sin (y1) −
f
m

y2 +
1

m`2 u

Modelling in Continuous Time - how to linearize an ODE 20



• then we can rewrite the system into its state space form
• obviously here the states will be angular position and angular velocity

notes
Second step: finding the equilibria (assuming u = 0)

`

θ

thus from
ẏ1 = y2

ẏ2 = −
g
`

sin (y1) −
f
m

y2 +
1

m`2 u

to
⎧⎪⎪⎪⎨⎪⎪⎪⎩

0 = y2

0 = −g
`

sin (y1) −
f
m

y2
Ô⇒ yeq.inst = [

π + 2kπ

0
] , yeq.st = [

0 + 2kπ

0
]

Modelling in Continuous Time - how to linearize an ODE 21

• then the equilibria follow immediately
• as intuition drives, we have several equilibria (all the upwards, and all the downwards). From

practical perspectives we may just consider these two ones: yeq.st = [0, 0]T and yeq.inst = π

notes
Linearizing around the first equilibrium

ẏ1 = y2

ẏ2 = −
g
`

sin (y1) −
f
m

y2 +
1

m`2 u

linearizing around yeq.st = [0, 0]T , u = 0 implies

A =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

∂f1
∂y1

∂f1
∂y2

∂f2
∂y1

∂f2
∂y2

⎤⎥⎥⎥⎥⎥⎥⎥⎦

RRRRRRRRRRRRRRRRRRRyeqα

=
⎡⎢⎢⎢⎢⎢⎣

0 1

−g
`
− f

m

⎤⎥⎥⎥⎥⎥⎦

B =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

∂f1
∂u
∂f2
∂u

⎤⎥⎥⎥⎥⎥⎥⎥⎦

RRRRRRRRRRRRRRRRRRyeqα

=
⎡⎢⎢⎢⎢⎢⎣

0
1

m`2

⎤⎥⎥⎥⎥⎥⎦
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• then doing the computations we get these equivalences

notes
Linearizing around the second equilibrium

ẏ1 = y2

ẏ2 = −
g
`

sin (y1) −
f
m

y2 +
1

m`2 u

linearizing around yeqβ = [π, 0]T , u = 0 implies

A =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

∂f1
∂y1

∂f1
∂y2

∂f2
∂y1

∂f2
∂y2

⎤⎥⎥⎥⎥⎥⎥⎥⎦

RRRRRRRRRRRRRRRRRRRyeqβ

=
⎡⎢⎢⎢⎢⎢⎣

0 1
g
`
− f

m

⎤⎥⎥⎥⎥⎥⎦

B =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

∂f1
∂u
∂f2
∂u

⎤⎥⎥⎥⎥⎥⎥⎥⎦

RRRRRRRRRRRRRRRRRRyeqβ

=
⎡⎢⎢⎢⎢⎢⎣

0
1

m`2

⎤⎥⎥⎥⎥⎥⎦
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• and for the second case we get this

notes
The two linearized systems

Around the stable equilibrium: [∆ẏ1
∆ẏ2
] =
⎡⎢⎢⎢⎢⎢⎣

0 1

−g
`
− f

m

⎤⎥⎥⎥⎥⎥⎦
[∆y1
∆y2
] +
⎡⎢⎢⎢⎢⎢⎣

0
1

m`2

⎤⎥⎥⎥⎥⎥⎦
u

Around the unstable equilibrium: [∆ẏ1
∆ẏ2
] =
⎡⎢⎢⎢⎢⎢⎣

0 1
g
`
− f

m

⎤⎥⎥⎥⎥⎥⎦
[∆y1
∆y2
] +
⎡⎢⎢⎢⎢⎢⎣

0
1

m`2

⎤⎥⎥⎥⎥⎥⎦
u

the trajectories starting close to the stable equilibrium
“stay around there”, while the trajectories starting close
to the unstable equilibrium “run away”. This is because

of the inner structure of the two state update matri-
ces – another reason why we shall study linear algebra
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• summarizing, we get this
• and note then how just changing one sign in the A matrices we have to get two systems that

behave completely differently
• we definitely have to learn linear algebra

notes
Summarizing the procedure

• linearizing ẏ = f (y , u) is meaningful only around an equilibrium (yeq, ueq)

• to find the equilibria of a system we need to solve f (y , u) = 0

• each equilibrium will lead to its "own" corresponding linear model ẏ = Ay +Bu,
where A and B thus depend on (yeq, ueq) and y , u in ẏ = Ay +Bu have actually
the meaning of ∆y , ∆u with respect to the equilibrium

• each linearized model ẏ = Ay +Bu is more or less valid only in a neighborhood of
(yeq, ueq). Moreover the size of this neighborhood depends on the curvature of f
around that specific equilibrium point

Modelling in Continuous Time - how to linearize an ODE 25

• so, the first step to linearize a system is remembering that we do linearizations around equilibria
• then we should also remember how to compute equilibria
• as shown in the pendulum example above, each equilibrium leads to its own dynamics
• and we also have that the approximation is more or less valid, depending on different factors

notes
Recapping the rationale behind linearization

• linear systems are easier to analyze than nonlinear systems

• modal analysis and rational Laplace-transforms call for linear systems

• many advanced control techniques are based on linear systems

linearization = a very useful tool to do
analysis and design of control systems
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• and let’s also spend a minute on saying again why we do this
• first of all, this is true
• moreover we will see soon that linear systems enable doing a lot of very useful analyses
• and you can get controllers performing very well with linear systems
• so, remember this

notes
Linearization - Another example

electrostatic microphone:
• q = capacitor charge
• h = distance of armature from its natural equilibrium
• y = [q, h, ḣ]

• R = circuit resistance
• E = voltage generated by the generator (constant)
• C = capacity of the capacitor
• m = mass of the diaphragm + moved air
• k = mechanical spring coefficient
• β = mechanical dumping coefficient
• u1 = incoming acoustic signal
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• this is another example that you may try by yourself

notes
Linearization - Another example

a physics-driven model:

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

ẏ1 = − 1
Ra

y1 (L + y2) +
E
R

ẏ2 = y3

ẏ3 = − β

m
y3 −

k
m

y2 −
y2

1
2am

+ 1
m

u1
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• without entering too much into details (you can also take a look at the corresponding example
in the Fornasini Marchesini), this is a meaningful model of this system

notes
Linearization - Example

1-st step: compute the equilibria

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

ẏ1 = − 1
Ra

y1 (L + y2) +
E
R

ẏ2 = y3

ẏ3 = − β

m
y3 −

k
m

y2 −
y2

1
2am

+ 1
m

u1

2-nd step: compute the matrices

A = ∇y f (y , u) ∣
yeq,ueq

B = ∇uf (y , u) ∣
yeq,ueq

C = ∇yg (y , u) ∣
yeq,ueq

D = ∇ug (y , u) ∣
yeq,ueq
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• try to do this by yourself!

notes
Summarizing

Linearize a nonlinear ODE around an equilibrium point

• find the equilibria
• select an equilibrium
• compute the derivatives around that equilibrium
• use the formulas
• don’t forget that you are also changing the coordinate system!
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• you should now be able to do this, following the pseudo-algorithm in the itemized list

notes

Most important python code for this sub-module

Modelling in Continuous Time - how to linearize an ODE 1

•

notes
This will do everything for you

https://python-control.readthedocs.io/en/latest/generated/control.
linearize.html

though it is dangerous to use tools without knowing how they work

Modelling in Continuous Time - how to linearize an ODE 2

https://python-control.readthedocs.io/en/latest/generated/control.linearize.html
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• be always wary of using code without knowing the effects and meaning of the operations they
do

notes

Self-assessment material

Modelling in Continuous Time - how to linearize an ODE 1

•

notes
Question 35

What does it mean to linearize a nonlinear ordinary differential equation (ODE)?

Potential answers:

I: (correct) It means approximating the nonlinear ODE with a linear model
around an equilibrium point.

II: (wrong) It means replacing the ODE with a completely unrelated linear
system.

III: (wrong) It means integrating the ODE analytically to find a closed-form
solution.

IV: (wrong) It means ignoring all nonlinear terms in the system dynamics.
V: (wrong) I do not know

Solution 1:

Linearizing an ODE means approximating it with a linear model around an equi-
librium point using a first-order Taylor series expansion. This allows for easier
analysis and control design.

Modelling in Continuous Time - how to linearize an ODE 2



• see the associated solution(s), if compiled with that ones :)

notes
Question 36

What is the primary requirement for performing a valid linearization of a function?

Potential answers:

I: (wrong) The function must be polynomial.
II: (correct) The function must be differentiable at the point of linearization.

III: (wrong) The function must be bounded over the entire real line.
IV: (wrong) The function must have a second derivative at all points.
V: (wrong) I do not know

Solution 1:

A function must be differentiable at the point of linearization to compute its
first-order Taylor series expansion, which is the basis for linearization.

Modelling in Continuous Time - how to linearize an ODE 3

• see the associated solution(s), if compiled with that ones :)

notes
Question 37

Why do we typically linearize a nonlinear system around an equilibrium point?

Potential answers:

I: (wrong) Because equilibrium points always yield globally valid linear
models.

II: (wrong) Because nonlinear systems have no real solutions.
III: (correct) Because an equilibrium point ensures the validity of the local

linear approximation.
IV: (wrong) Because linearization eliminates all system dynamics.
V: (wrong) I do not know

Solution 1:

Linearizing around an equilibrium point ensures that the approximation is mean-
ingful in a small neighborhood, as the system is at rest or has steady-state behavior
there.

Modelling in Continuous Time - how to linearize an ODE 4



• see the associated solution(s), if compiled with that ones :)

notes
Question 38

In a state-space representation of an ODE, what do the matrices A and B represent in
the linearized system?

Potential answers:

I: (wrong) A and B are arbitrary matrices chosen for stability.
II: (wrong) A represents the second derivative of the state, and B represents

the system’s damping.
III: (wrong) A and B are obtained by solving the system for eigenvalues and

eigenvectors.
IV: (correct) A is the Jacobian of the system dynamics with respect to the

state, and B is the Jacobian with respect to the input.
V: (wrong) I do not know

Solution 1:

The matrices A and B in a linearized state-space model come from computing the
Jacobian matrices of the system dynamics with respect to the state and input,
respectively, at the equilibrium point.

Modelling in Continuous Time - how to linearize an ODE 5

• see the associated solution(s), if compiled with that ones :)

notes
Question 39

Which of the following is a common limitation of linearizing a nonlinear system?

Potential answers:

I: (correct) The linearized model is only valid in a small neighborhood
around the linearization point.

II: (wrong) The linearized model has no practical applications in control.
III: (wrong) Linearization makes the system unstable.
IV: (wrong) Linearization eliminates all dynamic behavior of the system.
V: (wrong) I do not know

Solution 1:

A linearized model is typically valid only in a small neighborhood around the
equilibrium point where it was derived. If the system deviates significantly from
this region, the approximation may no longer be accurate.

Modelling in Continuous Time - how to linearize an ODE 6



• see the associated solution(s), if compiled with that ones :)

notes
Recap of sub-module “how to linearize an ODE”

• linearization requires following a series of steps (see the summary above)
• the model that one gets in this way is an approximation of the original model
• having a graphical understanding of what means what is essential to remember

how to do things
• better testing a linear controller before a nonlinear one

Modelling in Continuous Time - how to linearize an ODE 7

• the most important remarks from this sub-module are these ones

notes

when is linearizing meaningful

Modelling in Continuous Time - when is linearizing meaningful 1



•

notes
Contents map

developed content units taxonomy levels
linearization u1, e1

prerequisite content units taxonomy levels
ODE u1, e1

Modelling in Continuous Time - when is linearizing meaningful 2

•

notes
Main ILO of sub-module “when is linearizing meaningful”

Assess the validity of the approximation introduced when
linearizing a nonlinear ODE around an equilibrium point

Evaluate the meaning and applicability of linearization in different contexts,
discussing when it provides a reasonable approximation and when it does not

Modelling in Continuous Time - when is linearizing meaningful 3



• by the end of this module you shall be able to do this

notes
Discussion: around which equilibrium may we consider this model
approximation a “good one”?

ẏ

y

also for the ‘unstable’ equilibrium the approximation
may be a good one - depends on the time horizon un-

der consideration and how close y0 is to the equilibrium

Modelling in Continuous Time - when is linearizing meaningful 4

• the fact that A and f are different (even if one is the approximation of the other one) means
that, if we think at their physical meaning, starting from the same point the two models give
different indications towards where y should go

• this means that the trajectories will be different
• how much different, though? Depends of course on some sort of distance between A and f
• for the asymptotically stable equilibrium the approximation will get better and better in time;

for the unstable equilibrium worse and worse in time
• recall though that one may consider an arbitrarily small neighborhood of the approximation

point. In this way one may think that the linearized version may be an arbitrarily good
approximation, if one focuses in a sufficiently small neighborhood

• in this course we will not see how to compute bounds of the error between these two trajec-
tories; you will do it in later on courses

notes
Discussion: is it always meaningful to linearize?

ẏ

y

in this case we do not have equilibria

Modelling in Continuous Time - when is linearizing meaningful 5



• a simple case that shows that if we do not have equilibria actually we can’t linearize

notes
Discussion: and here, can we linearize?

ẏ

y

in this case we cannot compute the first derivative

Modelling in Continuous Time - when is linearizing meaningful 6

• a simple case that shows that if we do not have continuity for the derivative actually we can’t
linearize

notes
Discussion: can we trust the stable linearized system for this case?

ẏ

y

in this case the basin of attraction is very small

Modelling in Continuous Time - when is linearizing meaningful 7



• a simple case that shows that if the basin of attractions are very small, the linearized system
may be trusted in a very small region

notes
Summarizing

Assess the validity of the approximation introduced when
linearizing a nonlinear ODE around an equilibrium point

Evaluate the meaning and applicability of linearization in different contexts,
discussing when it provides a reasonable approximation and when it does not

• if we have an asymptotically stable equilibrium, the approximation improves in
time

• if we have an unstable equilibrium, the approximation degrades in time
• the closer we start from the equilibrium, the better
• the bigger the curvature of the ODE, the more “local” the results will be

Modelling in Continuous Time - when is linearizing meaningful 8

• you should now be able to do this, following the pseudo-algorithm in the itemized list

notes

Most important python code for this sub-module

Modelling in Continuous Time - when is linearizing meaningful 1



•

notes
This will do everything for you

https://python-control.readthedocs.io/en/latest/generated/control.
linearize.html

though it is dangerous to use tools without knowing how they work

Modelling in Continuous Time - when is linearizing meaningful 2

• be always wary of using code without knowing the effects and meaning of the operations they
do

notes

Self-assessment material

Modelling in Continuous Time - when is linearizing meaningful 1
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•

notes
Question 40

When linearizing a nonlinear ODE around an equilibrium point, which of the following
conditions ensures that the approximation improves over time?

Potential answers:

I: (wrong) The equilibrium point is unstable.
II: (correct) The equilibrium point is asymptotically stable.

III: (wrong) The ODE has a high curvature near the equilibrium point.
IV: (wrong) The initial point is far from the equilibrium.
V: (wrong) I do not know.

Solution 1:

The approximation improves over time when the equilibrium point is asymptoti-
cally stable. This is because trajectories near such equilibria converge toward the
equilibrium, making the linearized model increasingly accurate.

Modelling in Continuous Time - when is linearizing meaningful 2

• see the associated solution(s), if compiled with that ones :)

notes
Question 41

In which of the following cases is it NOT meaningful to linearize a nonlinear ODE?

Potential answers:

I: (wrong) The ODE has multiple equilibrium points.
II: (correct) The ODE does not have any equilibrium points.

III: (wrong) The ODE has a small basin of attraction.
IV: (wrong) The ODE is highly nonlinear.
V: (wrong) I do not know.

Solution 1:

Linearization is not meaningful when the ODE does not have any equilibrium
points, as the process of linearization relies on approximating the system near an
equilibrium. Modelling in Continuous Time - when is linearizing meaningful 3



• see the associated solution(s), if compiled with that ones :)

notes
Question 42

Which of the following factors limits the validity of a linearized ODE approximation?

Potential answers:

I: (wrong) The linearized system has a stable equilibrium.
II: (correct) The basin of attraction of the equilibrium is very small.

III: (wrong) The ODE is continuous and differentiable.
IV: (wrong) The initial point is close to the equilibrium.
V: (wrong) I do not know.

Solution 1:

A very small basin of attraction limits the validity of the linearized approximation,
as the region where the approximation holds becomes very restricted.

Modelling in Continuous Time - when is linearizing meaningful 4

• see the associated solution(s), if compiled with that ones :)

notes
Question 43

What happens to the accuracy of a linearized ODE approximation near an unstable
equilibrium point over time?

Potential answers:

I: (correct) The approximation degrades over time.
II: (wrong) The approximation improves over time.

III: (wrong) The accuracy remains constant.
IV: (wrong) The accuracy depends on the curvature of the ODE.
V: (wrong) I do not know.

Solution 1:

Near an unstable equilibrium, the approximation degrades over time because tra-
jectories diverge from the equilibrium, making the linearized model less accurate.Modelling in Continuous Time - when is linearizing meaningful 5



• see the associated solution(s), if compiled with that ones :)

notes
Question 44

Which of the following statements about linearization is true?

Potential answers:

I: (wrong) Linearization is always a good approximation for any nonlinear
ODE.

II: (correct) Linearization provides a better approximation when the initial
point is closer to the equilibrium.

III: (wrong) Linearization is only valid for ODEs with high curvature.
IV: (wrong) Linearization cannot be applied to stable systems.
V: (wrong) I do not know.

Solution 1:

Linearization provides a better approximation when the initial point is closer to
the equilibrium, as the linearized model is most accurate in a small neighborhood
around the equilibrium.

Modelling in Continuous Time - when is linearizing meaningful 6

• see the associated solution(s), if compiled with that ones :)

notes
Recap of sub-module “when is linearizing meaningful”

• be careful when using a linearized system - be always aware of where it comes from

Modelling in Continuous Time - when is linearizing meaningful 7



• the most important remarks from this sub-module are these ones

notes

what is the superposition principle, and what does it imply

Modelling in Continuous Time - what is the superposition principle, and what does it imply 1

•

notes
Contents map

developed content units taxonomy levels
superposition principle u1, e1

prerequisite content units taxonomy levels
LTI ODE u1, e1

Modelling in Continuous Time - what is the superposition principle, and what does it imply 2



•

notes
Main ILO of sub-module
“what is the superposition principle, and what does it imply”

Describe the importance of the super-
position principle to analyze LTI systems

Modelling in Continuous Time - what is the superposition principle, and what does it imply 3

• by the end of this module you shall be able to do this

notes
Starting with graphs

y

f (y) = αy

implications/definition of linearity:
• f (x + y) = f (x) + f (y)
• f (αy) = αf (y)

Modelling in Continuous Time - what is the superposition principle, and what does it imply 4



• looking at this graph, we note that these two properties hold
• and this holds only because of linearity. If we are having an affine map, for example, the

second would not hold

notes
What if we interpret this as an ODE?

y

ẏ = αy

Ô⇒ an LTI system, for which

ẏ = αy is solved by y(t) = y(0) exp(αt) ∀y(0), α, t

Modelling in Continuous Time - what is the superposition principle, and what does it imply 5

• you may verify this solution by doing the direct verification

notes
And can we build on top of this?

y

ẏ = αy

• y ′(0) = 2↦ y ′(t) = 2 exp(αt)
• y ′′(0) = 3↦ y ′′(t) = 3 exp(αt)
• y ′′′(0) = 3 + 2↦ y ′′′(t) = (3 + 2) exp(αt)

y ′(0) + y ′′(0) ↦ y ′(t) + y ′′(t)
Modelling in Continuous Time - what is the superposition principle, and what does it imply 6



• looking at what we found in the previous module, this holds because the solutions to linear
ODEs are exponentials passing by the initial conditions and whose exponent is always a

• and this holds only because of linearity

notes
Further generalization

y

ẏ = ay + bu

u

• {y ′(0), u′}↦ y ′(t)
• {y ′′(0), u′′}↦ y ′′(t)
• {y ′(0) + y ′′(0), u′ + u′′}↦ y ′(t) + y ′′(t)

Modelling in Continuous Time - what is the superposition principle, and what does it imply 7

• we can then generalize the previous result in this way, when we have linearity

notes
Aiding intuitions with math

Linearity implies that if {y ′, u′, y ′(0)} and {y ′′, u′′, y ′′(0)} satisfy

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dy ′(t)
dt

= ay ′(t) + bu′(t)
y ′(0) = y ′0

dy ′′(t)
dt

= ay ′′(t) + bu′′(t)
y ′′(0) = y ′′0

(5)

then their sum also satisfies
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

d(α′y ′(t) + α′′y ′′(t))
dt

= a(α′y ′(t) + α′′y ′′(t)) + b(α′u′(t) + α′′u′′(t))

α′y ′(0) + α′′y ′′(0) = α′y ′0 + α′′y ′′0
(6)

Modelling in Continuous Time - what is the superposition principle, and what does it imply 8



• let’s start realizing that this holds because derivatives hold

notes
Rephrasing

Linearity implies that if {y ′, u′, y ′(0)} and {y ′′, u′′, y ′′(0)} satisfy the ODE then also
their sum {y ′ + y ′′, u′ + u′′, y ′(0) + y ′′(0)} satisfies the ODE.

The superposition principle in words
in LTI systems
combining inputs and initial conditions
produces a total effect
that is the linear combination
of that effects
one would get with the individual causes
each acting separately

Modelling in Continuous Time - what is the superposition principle, and what does it imply 9

• this is the same thing in the previous slide, written in words
• then the previous math basically says this

notes
Important: the superposition principle works with any LTI
Will be repeated and stated again precisely later on

the proof holds for every system that generalizes ẏ = ay + bu,
i.e., every “linear combination of dots of y = linear combination of dots of u”

Modelling in Continuous Time - what is the superposition principle, and what does it imply 10



• we have moreover this generalization, that we will see again and again, since derivatives are
linear

notes
Superposition principle Ô⇒ response of LTIs = free evolution + forced
response

assume:
• ẏ = ay + bu
• {u(t) = 0(t), y(0) ≠ 0} causes yfree evolution(t)
• {u(t) ≠ 0(t), y(0) = 0} causes yforced response(t)

t

y(t)

yfree evolution(t)

yforced response(t)

ytotal response(t)

then {u(t) ≠ 0(t), y(0) ≠ 0} causes yfree evolution(t) + yforced response(t)
Modelling in Continuous Time - what is the superposition principle, and what does it imply 11

• the generalization in the previous slide can immediately be useful to show something very
important, i.e., that we can decompose the general solution in to main parts, as here

notes
A mnemonic scheme
(only for LTI systems!!)

(u, y0) = (0, y0) + (u, 0)

total response = free evolution + forced response

Modelling in Continuous Time - what is the superposition principle, and what does it imply 12



•

notes
Continuing with some intuitions

x

m
k

f
F

Discussion: how will the cart move if I use u(t) = sin(ωt) starting from a resting
state? (only intuitively, assuming everything ideal)
And what about if u(t) = 2 sin(ωt)?
And what about u(t) = sin (ω′t) + sin (ω′′t)?
And what about u(t) = α′ sin (ω′t) + α′′ sin (ω′′t)?

Modelling in Continuous Time - what is the superposition principle, and what does it imply 13

• we will see later on precisely; for now let’s say that it moves somehow
• here intuition may not help: anyway it makes the same movement as before but with twice

the amplitude
• here intuition may again not help: it makes the sum of the two movements
• here intuition may again not help: it makes the sum of the two movements scaled

notes
Refining the intuitions

x

m
k

f
F

Assume to have measured

y ′(0), u′(t)↦ y ′(t) y ′′(0), u′′(t)↦ y ′′(t)

Saying "this system is linear" means assuming ∀α′, α′′ ∈ R

α′y ′(0)α′y ′′(0), u′(t)↦ y ′(t) y ′′(0), u′′(t)↦ y ′′(t)

thus assuming that from a resting state the input u(t) = α sin (ωαt) + β sin (ωβt)
causes y(t) = αyωα(t) + βyωβ(t)

Modelling in Continuous Time - what is the superposition principle, and what does it imply 14



• so this is the solution to the previous question

notes
Summarizing

Describe the importance of the super-
position principle to analyze LTI systems

• it makes us able to say “total = free + forced”

Modelling in Continuous Time - what is the superposition principle, and what does it imply 15

• you should now be able to do this, following the pseudo-algorithm in the itemized list

notes

Most important python code for this sub-module

Modelling in Continuous Time - what is the superposition principle, and what does it imply 1



•

notes
Suggestion

part of the SciPy library (scipy.signal) provides tools for working with LTI systems,
including creating transfer functions, state-space representations, and analyzing system
responses (stuff that will be seen in the next modules)

Modelling in Continuous Time - what is the superposition principle, and what does it imply 2

• check this library, you will use it

notes

Self-assessment material

Modelling in Continuous Time - what is the superposition principle, and what does it imply 1



•

notes
Question 45

What does the superposition principle imply for LTI systems?

Potential answers:

I: (wrong) The total response is the product of the free evolution and
forced response.

II: (correct) The total response is the sum of the free evolution and forced
response.

III: (wrong) The total response is independent of the initial conditions.
IV: (wrong) The total response is only determined by the input.
V: (wrong) I do not know.

Solution 1:

The superposition principle implies that the total response of an LTI system is
the sum of the free evolution (response due to initial conditions) and the forced
response (response due to the input). This is a fundamental property of linear
systems.

Modelling in Continuous Time - what is the superposition principle, and what does it imply 2

• see the associated solution(s), if compiled with that ones :)

notes
Question 46

Which of the following is a necessary condition for the superposition principle to hold
in a system?

Potential answers:

I: (wrong) The system must be nonlinear.
II: (correct) The system must be linear and time-invariant.

III: (wrong) The system must have time-varying parameters.
IV: (wrong) The system must be unstable.
V: (wrong) I do not know.

Solution 1:

The superposition principle holds only for Linear Time-Invariant (LTI) systems.
Nonlinear or time-varying systems do not satisfy the superposition principle.Modelling in Continuous Time - what is the superposition principle, and what does it imply 3



• see the associated solution(s), if compiled with that ones :)

notes
Question 47

What is the free evolution of an LTI system?

Potential answers:

I: (wrong) The response of the system to a nonzero input with zero initial
conditions.

II: (correct) The response of the system to zero input with nonzero initial
conditions.

III: (wrong) The steady-state response of the system.
IV: (wrong) The transient response of the system.
V: (wrong) I do not know.

Solution 1:

The free evolution of an LTI system is the response of the system when the input
is zero, but the initial conditions are nonzero. It represents the system’s natural
behavior without external forcing.

Modelling in Continuous Time - what is the superposition principle, and what does it imply 4

• see the associated solution(s), if compiled with that ones :)

notes
Question 48

If an LTI system has an input u(t) = α′u′(t) + α′′u′′(t) and initial conditions
y(0) = α′y ′(0) + α′′y ′′(0), what is the total response y(t)?

Potential answers:

I: (wrong) y(t) = α′y ′(t) ⋅ α′′y ′′(t)
II: (correct) y(t) = α′y ′(t) + α′′y ′′(t)

III: (wrong) y(t) = α′y ′(t) − α′′y ′′(t)
IV: (wrong) y(t) = α′y ′(t)/α′′y ′′(t)
V: (wrong) I do not know.

Solution 1:

For an LTI system, the total response y(t) is the linear combination of the
individual responses y ′(t) and y ′′(t), scaled by α′ and α′′, respectively. This is
a direct consequence of the superposition principle.

Modelling in Continuous Time - what is the superposition principle, and what does it imply 5



• see the associated solution(s), if compiled with that ones :)

notes
Question 49

What is the forced response of an LTI system?

Potential answers:

I: (correct) The response of the system to a nonzero input with zero initial
conditions.

II: (wrong) The response of the system to zero input with nonzero initial
conditions.

III: (wrong) The response of the system to a step input.
IV: (wrong) The response of the system to a sinusoidal input.
V: (wrong) I do not know.

Solution 1:

The forced response of an LTI system is the response of the system when the
input is nonzero, but the initial conditions are zero. It represents the system’s
behavior due to external forcing.

Modelling in Continuous Time - what is the superposition principle, and what does it imply 6

• see the associated solution(s), if compiled with that ones :)

notes
Recap of sub-module
“what is the superposition principle, and what does it imply”

• superposition principle helps logically separating specific causes into specific effects
• linear ODEs Ô⇒ superposition principle
• superposition principle Ô⇒ "whole = free + forced"
• nonlinear systems WON’T satisfy this principle!

Modelling in Continuous Time - what is the superposition principle, and what does it imply 7



• the most important remarks from this sub-module are these ones

notes

what is an impulse response

Modelling in Continuous Time - what is an impulse response 1

•

notes
Contents map

developed content units taxonomy levels
Dirac delta u1, e1
impulse response u1, e1

prerequisite content units taxonomy levels
superposition principle u1, e1
LTI ODE u1, e1

Modelling in Continuous Time - what is an impulse response 2



•

notes
Main ILO of sub-module “what is an impulse response”

Describe what the impulse response of an LTI system is in practice

Modelling in Continuous Time - what is an impulse response 3

• by the end of this module you shall be able to do this

notes
Impulse response ↔ superposition principle ↔ LTI system

talking about the impulse response of a nonlinear system is such
a big mistake that may make you fail the exam on the spot

Modelling in Continuous Time - what is an impulse response 4



• not joking here; we will see in this module that the concept is a direct consequence, and not
having understood that an impulse response is meaningful only for LTI systems indicates a
complete misunderstanding of the basis of the course

notes
Practical example: spring-mass system

x

m
k

f
F

• output = position
• input = force (in Newtons)

Modelling in Continuous Time - what is an impulse response 5

• In the mass-spring-damper system the impulse is a quick push (force times time) applied to
the mass. The impulse response is the displacement of the mass over time after the push.
The units of the impulse response are m/Ns.

notes
What if I push the cart with a force of 1 Newton?

x

m
k

f
F

u(t), y(t)

t

Modelling in Continuous Time - what is an impulse response 6



• note that here the position is x , but also y = x

notes
What if I push the cart with a force of 0.5 Newtons?

x

m
k

f
F

u(t), y(t)

t

Modelling in Continuous Time - what is an impulse response 7

• note that here the position is x , but also y = x

notes
What if I push the cart with a force of 2 Newtons?

x

m
k

f
F

u(t), y(t)

t

Modelling in Continuous Time - what is an impulse response 8



• note that here the position is x , but also y = x

notes
What if I push the cart with a force of 2 Newtons for 2 seconds?

x

m
k

f
F

u(t), y(t)

t

Modelling in Continuous Time - what is an impulse response 9

• note that here the position is x , but also y = x

notes
What if I push the cart with a force of 1 Newton for 1 second?

x

m
k

f
F

u(t), y(t)

t

Modelling in Continuous Time - what is an impulse response 10



• note that here the position is x , but also y = x

notes
What if I push the cart with a force of 2 Newtons for 0.5 seconds?

x

m
k

f
F

u(t), y(t)

t

Modelling in Continuous Time - what is an impulse response 11

• note that here the position is x , but also y = x

notes
What if I push the cart with a force of 3 Newtons for 1/3 of a second?

x

m
k

f
F

u(t), y(t)

t
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• note that here the position is x , but also y = x

notes
4 Newtons for 1/4 of a second?

u(t), y(t)

t
Modelling in Continuous Time - what is an impulse response 13

• note that here the position is x , but also y = x

notes
5 Newtons for 1/5 of a second?

u(t), y(t)

t
Modelling in Continuous Time - what is an impulse response 14



• note that here the position is x , but also y = x

notes
100 Newtons for 1/100 of a second?

y(t)

t
Modelling in Continuous Time - what is an impulse response 15

• here we do not plot u, since it is out of scale

notes
1000 Newtons for 1/1000 of a second?

y(t)

t
Modelling in Continuous Time - what is an impulse response 16



• here we do not plot u, since it is out of scale

notes
Where are we going with the input signal?
↦ Dirac’s delta, i.e., pushing an unitary mass within an infinitesimal space

u(t)→ δ(t)

t

↑ 1
dt

← dt

Modelling in Continuous Time - what is an impulse response 17

• let’s introduce this signal here
• note how for dt that goes to zero the signal becomes a sort of spike
• see also https://en.wikipedia.org/wiki/Dirac_delta_function

notes
ESSENTIAL POINT

this game has sense only because the system is assumed to be LTI

Modelling in Continuous Time - what is an impulse response 18
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• otherwise we would not be guaranteed that we were having this sort of well defined limit
behavior that we may explicitly compute by opportunely modifying the step response. If the
system is not LTI, the step response and the impulse response are not connected, and this
(as will be clear later on) implies we cannot use the response to the impulse as a template
for computing all the potential responses that the system may give for any generic input

notes
Discussion

Where would you draw δ(t − 4)?

u(t)

t
-2 -1 0 1 2 3 4 5 6

Modelling in Continuous Time - what is an impulse response 19

• for this the spike is in t = 10 (because the spike is where the argument is zero, and in this
case the argument is t − 10)

notes
Discussion

∫
+∞

−∞

f (τ)δ(τ − 4)dτ =?

δ(t − 4), f (t)

t
-2 -1 0 1 2 3 4 5 6

Modelling in Continuous Time - what is an impulse response 20



• it will be f (10) because the δ has infinite mass in 10 and thus the product of the two functions
is everywhere 0 but in f (10)

• when within an integral, δ thus somehow reveals that function within the integral in a specific
point

notes
Summarizing

Describe what the impulse response of an LTI system is in practice

• an opportune limit behavior of a transformation of the step response of a LTI
system

• it is though a transformation that makes sense only if the system is LTI

Modelling in Continuous Time - what is an impulse response 21

• you should now be able to do this, following the pseudo-algorithm in the itemized list

notes

Most important python code for this sub-module

Modelling in Continuous Time - what is an impulse response 1



•

notes
Important libraries / methods

• https://docs.scipy.org/doc/scipy/reference/generated/scipy.
signal.impulse.html

• https://python-control.readthedocs.io/en/latest/generated/
control.impulse_response.html

Modelling in Continuous Time - what is an impulse response 2

• with these methods you can compute the impulse response of a LTI system

notes

Self-assessment material

Modelling in Continuous Time - what is an impulse response 1
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•

notes
Question 50

What is the impulse response of an LTI system?

Potential answers:

I: (wrong) The output of the system when the input is a sinusoidal function.
II: (wrong) The output of the system when the input is a ramp function.

III: (wrong) The output of the system when the input is a step function.
IV: (correct) The output of the system when the input is a Dirac delta

function.
V: (wrong) I do not know.

Solution 1:

The impulse response of an LTI system is the output of the system when the
input is a Dirac delta function. This response characterizes the system’s behavior
and can be used to predict its output for any arbitrary input.

Modelling in Continuous Time - what is an impulse response 2

• see the associated solution(s), if compiled with that ones :)

notes
Question 51

Why is the impulse response meaningful only for LTI systems?

Potential answers:

I: (correct) Because the impulse response is a direct consequence of the
superposition principle, which applies only to LTI systems.

II: (wrong) Because nonlinear systems do not respond to impulses.
III: (wrong) Because the impulse response is too complex to compute for

nonlinear systems.
IV: (wrong) Because nonlinear systems have infinite impulse responses.
V: (wrong) I do not know.

Solution 1:

The impulse response is meaningful only for LTI systems because it relies on the
superposition principle, which is a fundamental property of LTI systems. Nonlinear
systems do not satisfy this principle, making the concept of an impulse response
invalid for them.

Modelling in Continuous Time - what is an impulse response 3



• see the associated solution(s), if compiled with that ones :)

notes
Question 52

What happens to the mass-spring-damper system when the input force is a Dirac delta
function?

Potential answers:

I: (wrong) The mass oscillates indefinitely without damping.
II: (correct) The mass exhibits a transient response that decays over time

due to damping.
III: (wrong) The mass remains stationary because the impulse is too short

to affect it.
IV: (wrong) The mass moves with constant velocity.
V: (wrong) I do not know.

Solution 1:

When the input force is a Dirac delta function, the mass-spring-damper system
exhibits a transient response that decays over time due to the damping effect.
This response is the impulse response of the system.

Modelling in Continuous Time - what is an impulse response 4

• see the associated solution(s), if compiled with that ones :)

notes
Question 53

What is the integral of f (τ)δ(τ − 4) from −∞ to +∞?

Potential answers:

I: (wrong) ∫
+∞

−∞

f (τ)dτ

II: (wrong) 0
III: (correct) f (4)
IV: (wrong) δ(4)
V: (wrong) I do not know.

Solution 1:

The integral of f (τ)δ(τ − 4) from −∞ to +∞ is f (4). This is because the Dirac
delta function "samples" the function f (τ) at τ = 4.

Modelling in Continuous Time - what is an impulse response 5



• see the associated solution(s), if compiled with that ones :)

notes
Recap of sub-module “what is an impulse response”

• impulse responses are directly connected to step responses
• actually this connection is valid only if the system is LTI

Modelling in Continuous Time - what is an impulse response 6

• the most important remarks from this sub-module are these ones

notes

1D convolution in continuous time

Modelling in Continuous Time - 1D convolution in continuous time 1



•

notes
Contents map

developed content units taxonomy levels
convolution u1, e1

prerequisite content units taxonomy levels
signal u1, e1

Modelling in Continuous Time - 1D convolution in continuous time 2

•

notes
Main ILO of sub-module “1D convolution in continuous time”

Compute the convolution between two sin-
gle dimensional continuous time signals

Modelling in Continuous Time - 1D convolution in continuous time 3



• by the end of this module you shall be able to do this

notes
Why convolution?

because for a LTI system with impulse response h(t)
it follows that yforced(t) = u ∗ h(t)

Modelling in Continuous Time - 1D convolution in continuous time 4

• and indeed formally we get this result, that we do not prove for now

notes

extremely important result for LTI systems:

yforced(t) = h ∗ u(t) = u ∗ h(t) ∶=

∶= ∫
+∞

−∞

u(τ)h(t − τ)dτ = ∫
+∞

−∞

h(τ)u(t − τ)dτ

. . . and this module = what that formula actually means from graphical perspectives

Modelling in Continuous Time - 1D convolution in continuous time 5



•

notes
Additional material

Videos:
• https://www.youtube.com/watch?v=KuXjwB4LzSA
• https://www.youtube.com/watch?v=acAw5WGtzuk
• https://www.youtube.com/watch?v=IaSGqQa5O-M (for connections with

probability)
• https://www.youtube.com/playlist?list=

PL4iThgVpN7hmbIhHnCa7SDO0gLMoNwED_
• https://www.youtube.com/playlist?list=

PL4mJLdGEHNvhCuPXsKFrnD7AaQBlMEB6a

Animations:
• https://lpsa.swarthmore.edu/Convolution/CI.html
• https://phiresky.github.io/convolution-demo/

Modelling in Continuous Time - 1D convolution in continuous time 6

• the world is full of material on convolution - check also this stuff and not only what we do in
class

notes
Towards decomposing this formula in pieces

yforced(t) = h ∗ u(t) = ∫
+∞

−∞

u(τ)h(t − τ)dτ = ∫
+∞

−∞

h(τ)u(t − τ)dτ

better focus on
∫
+∞

−∞

u(τ)h(t − τ)dτ

or on
∫
+∞

−∞

h(τ)u(t − τ)dτ ?

in automatic control typically better the second

Modelling in Continuous Time - 1D convolution in continuous time 7
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• in the first option one has to “flip” u
• in the second option one has to “flip” h
• the second gives us more intuitions about the system, makes the impulse response directly

interpretable
• they though give the same results

notes
Towards decomposing this formula in pieces, small change of notation

yforced(t) = ∫
+∞

−∞

h(τ)u(t − τ)dτ ↦ yforced(now) = ∫
+∞

−∞

h(τ)u(now − τ)dτ

Modelling in Continuous Time - 1D convolution in continuous time 8

• better doing this change of notation, so to avoid some confusion

notes
Decomposing this formula in pieces

yforced(now) = ∫
+∞

−∞

h(τ)u(now − τ)dτ

Ô⇒ constituent pieces =
• u(now − τ)

• h(τ)

• u(now − τ)h(τ)

• ∫ u(now − τ)h(τ)dτ

Modelling in Continuous Time - 1D convolution in continuous time 9



• the main pieces / steps of computing a convolution are these ones

notes
Visualizing the various pieces

u(now − τ) h(τ) u(now − τ)h(τ) ∫
+∞

−∞

h(τ)u(now − τ)dτ

time

τ

Modelling in Continuous Time - 1D convolution in continuous time 10

• likely better watch the video in class for this animation, or try to refer to https://lpsa.
swarthmore.edu/Convolution/CI.html

notes
Example

u(t) = { 1 for t ∈ [1, 2]
0 otherwise

h(t) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

2 for t ∈ [0, 1)
1 for t ∈ [1, 2]
0 otherwise

t

signals(t)

τ

signals(τ)

Modelling in Continuous Time - 1D convolution in continuous time 11
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• see the video of the lesson for the example
• note though that with the second option the meaning of h is “how important the past is to

create the current output”

notes
Another Example:

u(t) = { 1 for t ∈ [1, 2] and t ∈ [2, 3]
0 otherwise

h(t) = { 2 for t ∈ [0, 2)
0 otherwise

?

Modelling in Continuous Time - 1D convolution in continuous time 12

• see the video of the lesson

notes
Paramount message

h in yforced(t) = ∫
+∞

−∞

h(τ)u(t − τ)dτ represents how much the past u’s contribute to
the current yforced:

t

h ∗ u(t)

Modelling in Continuous Time - 1D convolution in continuous time 13



• this is a very important interpretation, thus better to fix it
• for example, h(7) says how much u(t − 7) will enter into y(t) for any t
• so somehow h(τ) has an important graphical meaning
• if h(τ) decays fast, then somehow the system “forgets” the past inputs fast, and viceversa

notes
Refreshing what we are doing and why

Dynamics of a cart: v̇(t) = − k
m

v(t) + k
m

F(t) with:

• control input: u(t) (actuation from the motor, in this case = F(t))
• system output: y(t) (cart velocity, in this case = v(t))
• impulse response: h(t) (output corresponding to the input δ(t) assuming

y(0) = 0)
• free evolution: yfree(t) (output in time corresponding to no input, i.e., u(t) = 0,

and initial condition y(0) whatever it is)
• forced response: yforced(t) = u ∗ h(t) (output in time corresponding to null

initial condition, i.e., y(0) = 0, and input u(t) whatever it is)
• total response: y(t) = yfree(t) + yforced(t)

Modelling in Continuous Time - 1D convolution in continuous time 14

• just to be sure: what we are doing here is essential
• we want to understand how to map the input into the output
• if we want to do model predictive control indeed we need to know what a certain input is

going to cause to the output

notes
Quiz time!

h ∗ u(t) ∶= ∫
+∞

−∞

h(τ)u(t − τ)dτ

• is h ∗ u(t) = u ∗ h(t)?
• is (αh1 + βh2) ∗ u(t) = α (h1 ∗ u(t)) + β (h2 ∗ u(t))?
• if both h(τ) = 0 and u(t) = 0 if t < 0, how can we simplify

y(t) = ∫
+∞

−∞

h(τ)u(t − τ)dτ?

Modelling in Continuous Time - 1D convolution in continuous time 15



•
• obviously yes, since we can do the change of variables
•
• yes because the integrals are linear. This implies that the convolution operator is linear
•
• yes, it becomes y(t) = ∫

t

0
h(τ)u(t − τ)dτ

notes
Summarizing

Compute the convolution between two sin-
gle dimensional continuous time signals

• take one of the two signals
• translate it to the “current t”
• flip it
• multiply the two signals in a pointwise fashion
• compute the integral of the result

Modelling in Continuous Time - 1D convolution in continuous time 16

• you should now be able to do this, following the pseudo-algorithm in the itemized list

notes

Most important python code for this sub-module

Modelling in Continuous Time - 1D convolution in continuous time 1



•

notes
Methods implementing (discrete) convolutions

• https://numpy.org/doc/2.1/reference/generated/numpy.convolve.html
• https://docs.scipy.org/doc/scipy/reference/generated/scipy.

signal.convolve.html

Modelling in Continuous Time - 1D convolution in continuous time 2

• note that these methods take discrete arrays, also multidimensional

notes

Self-assessment material

Modelling in Continuous Time - 1D convolution in continuous time 1
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•

notes
Question 54

What does the convolution integral yforced(t) = ∫
+∞

−∞

h(τ)u(t − τ)dτ represent in the
context of LTI systems?

Potential answers:

I: (wrong) The free evolution of the system output.
II: (correct) The forced response of the system output due to the input

u(t).
III: (wrong) The total response of the system, including initial conditions.
IV: (wrong) The impulse response of the system.
V: (wrong) I do not know.

Solution 1:

The convolution integral yforced(t) = ∫
+∞

−∞

h(τ)u(t − τ)dτ represents the forced
response of the system output due to the input u(t). It describes how the system
responds to the input when initial conditions are zero.

Modelling in Continuous Time - 1D convolution in continuous time 2

• see the associated solution(s), if compiled with that ones :)

notes
Question 55

Which of the following is true about the convolution operation h ∗ u(t)?

Potential answers:

I: (wrong) It is only defined for periodic signals.
II: (wrong) It is only applicable to discrete-time systems.

III: (correct) It is commutative, i.e., h ∗ u(t) = u ∗ h(t).
IV: (wrong) It requires both signals to be symmetric.
V: (wrong) I do not know.

Solution 1:

The convolution operation is commutative, meaning h ∗ u(t) = u ∗ h(t). This
property holds for continuous-time signals in LTI systems.

Modelling in Continuous Time - 1D convolution in continuous time 3



• see the associated solution(s), if compiled with that ones :)

notes
Question 56

What does the impulse response h(t) of an LTI system represent?

Potential answers:

I: (wrong) The input signal u(t) applied to the system.
II: (wrong) The free evolution of the system output.

III: (wrong) The total response of the system, including initial conditions.
IV: (correct) The output of the system when the input is a Dirac delta

function δ(t).
V: (wrong) I do not know.

Solution 1:

The impulse response h(t) represents the output of the system when the input
is a Dirac delta function δ(t). It characterizes the system’s behavior.Modelling in Continuous Time - 1D convolution in continuous time 4

• see the associated solution(s), if compiled with that ones :)

notes
Question 57

If h(τ) = 0 for τ < 0 and u(t) = 0 for t < 0, how can the convolution integral
y(t) = ∫

+∞

−∞

h(τ)u(t − τ)dτ be simplified?

Potential answers:

I: (correct) y(t) = ∫
t

0
h(τ)u(t − τ)dτ

II: (wrong) y(t) = ∫
+∞

0
h(τ)u(t − τ)dτ

III: (wrong) y(t) = ∫
+∞

−∞

h(τ)u(τ)dτ

IV: (wrong) y(t) = ∫
0

−∞

h(τ)u(t − τ)dτ

V: (wrong) I do not know.

Solution 1:

If h(τ) = 0 for τ < 0 and u(t) = 0 for t < 0, the convolution integral simplifies to
y(t) = ∫

t

0
h(τ)u(t − τ)dτ , as the integrand is zero outside this interval.
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• see the associated solution(s), if compiled with that ones :)

notes
Question 58

What is the graphical interpretation of h(τ) in the convolution integral
yforced(t) = ∫

+∞

−∞

h(τ)u(t − τ)dτ?

Potential answers:

I: (wrong) It represents the future inputs of the system.
II: (correct) It represents how much past inputs contribute to the current

output.
III: (wrong) It represents the free evolution of the system.
IV: (wrong) It represents the total energy of the system.
V: (wrong) I do not know.

Solution 1:

The term h(τ) in the convolution integral represents how much past inputs u(t −
τ) contribute to the current output y(t). This is a key interpretation in LTI
systems.

Modelling in Continuous Time - 1D convolution in continuous time 6

• see the associated solution(s), if compiled with that ones :)

notes
Recap of sub-module “1D convolution in continuous time”

• convolution is an essential operator, since it can be used for LTI systems to
compute forced responses

• its graphical interpretation aids interpreting impulse responses as how the past
inputs contribute to current outputs

Modelling in Continuous Time - 1D convolution in continuous time 7



• the most important remarks from this sub-module are these ones

notes

computing free evolutions and forced responses of LTI systems

Modelling in Continuous Time - computing free evolutions and forced responses of LTI systems 1

•

notes
Contents map

developed content units taxonomy levels
free evolution u1, e1
forced response u1, e1

prerequisite content units taxonomy levels
LTI ODE u1, e1
convolution u1, e1
partial fraction decomposition u1, e1

Modelling in Continuous Time - computing free evolutions and forced responses of LTI systems 2



•

notes
Main ILO of sub-module
“computing free evolutions and forced responses of LTI systems”

Compute free evolutions and forced responses of LTI systems
using Laplace-based formulas (but only as procedural tools)

Modelling in Continuous Time - computing free evolutions and forced responses of LTI systems 3

• by the end of this module you shall be able to do this

notes
Disclaimer

the formulas introduced in this module shall be taken as “ex machina”

Modelling in Continuous Time - computing free evolutions and forced responses of LTI systems 4



• in other words, they are given and to be assumed as true
• in other courses or modules they will be derived from other principles

notes
Focus in this module = on ARMA models

y (n) = an−1y (n−1) + . . . + a0y + bmu(m) + . . . + b0u

with (i) meaning the i-th time derivative. Discussion: why is the LHS y (n) and not
any (n)? Discussion: and which initial conditions shall we consider?

Modelling in Continuous Time - computing free evolutions and forced responses of LTI systems 5

• generalizing the LTIs we saw until now, we can arrive at these models, and in this module
we will treat only these models (there may be other generalizations but you will see them in
other modules)

• the an−1y (n−1) + . . . + a0y part is called Auto-Regressive
• the bmu(m) + . . . + b0u part is called Moving-Average
• these names make more sense in discrete time systems of the type y(k + n) = an−1y(k + n −

1) + . . . + a0y(k) + bmu(k +m) + . . . + b0u(k) and k a discrete time index. Here we see that
the a’s correspond to an autoregression, and the b’s to the coefficients of a moving average.
In any case we use ARMA for both continuous and discrete dynamics of these types

• note that in mechanical systems like motors, the derivatives of u are meaningful because
they capture the system’s response to changes in the input signal, accounting for physical
constraints like inertia

• this is because if we were having any (n) on the left hand side then we could divide all the a’s
and b’s on the right hand side and get the same dynamics

• so we prefer to work with monic polynomials (i.e., in which the leading coefficient, that is the
nonzero coefficient of highest degree, is equal to 1) because we have less numbers to carry
around (plus it will be convenient for other purposes that we will see later on in the course)

• as for the initial conditions that one shall consider, we typically assume all the conditions on
the u equal to zero, while on the y they may be different from zero

notes
Laplace transforms - links for who would like to get more info about them

Laplace transforms = extension of Fourier transforms; interesting material:
• https://www.youtube.com/watch?v=r6sGWTCMz2k (Fourier series)
• https://www.youtube.com/watch?v=spUNpyF58BY (Fourier transforms)
• https://www.youtube.com/watch?v=nmgFG7PUHfo (on the historical

importance of Fast Fourier Transforms)
• https://www.youtube.com/watch?v=7UvtU75NXTg (Laplace Transforms, in

math)
• https://www.youtube.com/watch?v=n2y7n6jw5d0 (Laplace Transforms,

graphically)
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• note that this module treats the formulas as “given”, so who wants to look at these links
shall do only for self-interest, not for preparing oneself for exercises at the exam related to
this module

notes
Main usefulness: convolution in time transforms into multiplication in
Laplace-domain, and viceversa

{ H(s) = L{h(t)}
U(s) = L{u(t)}

Ô⇒ L{h ∗ u(t)} = H(s)U(s)

Noticeable name: transfer function (= H(s) = L{impulse response})
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• this is by far one of the most important properties of Laplace transforms for our purposes:
convolution in one of the domains will be multiplication in the other

• this implies that instead of computing u ∗ y , if computing H and U is fast, and if inverting
HU is fast, that way is preferrable

• the name “transfer function” is an important one and you will hear about it quite often

notes
An intuitive explanation of the usefulness of the Laplace transform in
automatic control

ẋ(t) + x(t) = 0, x(0) = 2

initial value problem

x(t) = 2e−t

solution in the time domain

sX(s) − x(0) +X(s) = 0

algebraic problem
L

X(s) = 2/(s + 1)

solution in the frequency domain

algebra

L−1

Modelling in Continuous Time - computing free evolutions and forced responses of LTI systems 8



• this means that we can follow this scheme
• in other words, for complicated differential equations Laplace transform allow us to solve the

problem algebraically. This is often much easier than solving the ODE directly

notes
First set of formulas to memorize: Laplace-transforming derivatives
(these will be motivated in other courses)

L{ẋ} = sX(s) − x(0)

L{ẍ} = s2X(s) − sx(0) − ẋ(0)

L{˙̇ ˙x} = s3X(s) − s2x(0) − sẋ(0) − ẍ(0)

L{xm} = . . .

Modelling in Continuous Time - computing free evolutions and forced responses of LTI systems 9

• these formulas shall be remembered by heart

notes
Example: spring mass system

ÿ = − f
m

ẏ − k
m

y + u

⇓

s2Y (s) − sy0 − ẏ0 = −
f
m
(sY (s) − y0) −

k
m

Y (s) +U(s)
⇓

s2Y (s) + f
m

sY (s) + k
m

Y (s) = +sy0 + ẏ0 +
f
m

y0 +U(s)
⇓

Y (s) =
y0 ( f

m + s) + ẏ0

s2 + f
m s + k

m
+ 1

s2 + f
m s + k

m
U(s)
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• let’s then start this path building on top of previous results
• more precisely, from the fact that using Laplace transforms we were able to characterize the

free evolution of second order LTI systems
• and Y (s) ≠ 0 happens when the initial conditions of the system are not null

notes
And what shall we do once we get this?

generalizing the previous slide: Y (s) = M(s)
A(s)

+ B(s)
A(s)

U(s)

with

• M(s)
A(s)

= Laplace transform of the free evolution

• B(s)
A(s)

U(s) = Laplace transform of the forced response

Ô⇒ we shall anti-transform; how? Main 2 cases:

• either U(s) = polynomial in s
polynomial in s

• or U(s) = something else

Modelling in Continuous Time - computing free evolutions and forced responses of LTI systems 11

• now we have this first result, where we note that the total signal is the sum of the two
individual signals “free evolution” plus “forced response”, but in the Laplace domain

• for the sake of this module we consider that U(s) may be rational or not

notes
Question 59

Is the Laplace transform of the signal

h(t) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

1
t + 1

if t ≥ 0
0 otherwise

a rational Laplace transform?

Potential answers:

I: (wrong) yes
II: (correct) no

III: (wrong) it depends
IV: (wrong) I don’t know

Solution 1:

A Laplace transform is rational if and only if it can be expressed as

H(s) = N(s)
D(s)

with both the numerator and the denominator finite order polynomials in s. If it
is rational, then doing a partial fraction decomposition in the Laplace’s domain
will translate into a finite number of terms like c

(s − λi)µi
for opportune values of

λ and µ. Taking the inverse-Laplace transform of these terms means eventually
that the associated signal, in the time domain, is a finite sum of terms like
αtµ expγt cos(βt). However, the considered h(t) = 1

t + 1
can be represented only

with an infinite number of terms αtµ expγt cos(βt). In other words, to obtain
this signal there is the need for an infinite number of elementary modes, and
this means an infinitely long partial fraction decomposition in Laplace. So the

associated transform is not rational, since its denominator will be a polynomial
with infinite order.
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• see the associated solution(s), if compiled with that ones :)

notes
Question 60

Is the Laplace transform of the signal h(t) below a rational Laplace transform?

t−1 1 2 3 4 5

h(t)

1

2

Potential answers:

I: (wrong) yes
II: (correct) no

III: (wrong) it depends
IV: (wrong) I don’t know

Solution 1:

A Laplace transform is rational if and only if it can be expressed as

H(s) = N(s)
D(s)

with both the numerator and the denominator finite order polynomials in s. If it
is rational, then doing a partial fraction decomposition in the Laplace’s domain
will translate into a finite number of terms like c

(s − λi)µi
for opportune values of

λ and µ. Taking the inverse-Laplace transform of these terms means eventually
that the associated signal, in the time domain, is a finite sum of terms like
αtµ expγt cos(βt). However, the considered h(t) = 1

t + 1
can be represented only

with an infinite number of terms αtµ expγt cos(βt). In other words, to obtain
this signal there is the need for an infinite number of elementary modes, and
this means an infinitely long partial fraction decomposition in Laplace. So the

associated transform is not rational, since its denominator will be a polynomial
with infinite order.

Modelling in Continuous Time - computing free evolutions and forced responses of LTI systems 13

• see the associated solution(s), if compiled with that ones :)

notes

first case: rational U(s)
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•

notes
How to do if U(s) = polynomial in s

polynomial in s

Y (s) = M(s)
A(s)

+ B(s)
A(s)

U(s) ↦ Y (s) = M(s)
A(s)

+ C(s)
D(s)

write each of the two parts of the signal as

N(s)
(s − λ1)(s − λ2)(s − λ3)⋯

Modelling in Continuous Time - computing free evolutions and forced responses of LTI systems 2

• in this case we have a situation for which we can write both elements as polynomial over
polynomial

notes
Next step: partial fraction decomposition

• case single poles: if N(s)
(s − λ1)(s − λ2)(s − λ3)⋯

is s.t. λ1 ≠ λ2 ≠ λ3 ≠ ⋯ then

there exist α1, α2, α3, . . . s.t.
N(s)

(s − λ1)(s − λ2)(s − λ3)⋯
= α1

s − λ1
+ α2

s − λ2
+ α3

s − λ3
+⋯ (7)

• case repeated poles: if some poles are repeated, then there exist α1,1, . . . ,
α1,n1, α2,1, . . . , α2,n2, . . . , s.t.

N(s)
(s − λ1)n1(s − λ2)n2⋯

=
α1,1

s − λ1
+ . . . +

α1,n1

(s − λ1)n1 +
α2,1

s − λ2
+ . . . +

α2,n2

(s − λ2)n2 + . . .

(8)

“But how do I compute α1, α2, etc.?” ↦
en.wikipedia.org/wiki/Partial_fraction_decomposition

(tip: start from en.wikipedia.org/wiki/Heaviside_cover-up_method)
Modelling in Continuous Time - computing free evolutions and forced responses of LTI systems 3
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• let’s remember that the partial fraction decomposition concept helps us factorizing ratios of
polynomials in a sum of simpler ratios

• and let’s also remember that there is the possibility of having multiple poles (something that,
as we will see very soon, connects with the concept of non-trivial Jordan structure of the A
expressing this LTI system)

• in case somebody does not remember how to do it, there is a couple of resources that may
help re-gaining knowledge on this tool

notes
Anti-transforming in the rational U(s) case

if Y (s) =
α1,1

s − λ1
+ . . . +

α1,n1

(s − λ1)n1 +
α2,1

s − λ2
+ . . . +

α2,n2

(s − λ2)n2 + . . . then use

L{tneλt} = n!
(s − λ)n+1 ↔ L−1 { n!

(s − λ)n+1} = tneλt

Modelling in Continuous Time - computing free evolutions and forced responses of LTI systems 4

• given this transform, y(t) is then immediately a sum of terms of the type tneλt for opportune
n’s that depend on the specific λ

• we see that this must connect with the structure of the Jordan form of the A expressing this
LTI

• we will reinforce this connection later on – the important for now is to realize that it exists
• now either all the terms are simple, or there are some repeated lambda’s

notes
Numerical Example: Inverse Laplace Transform of a Rational Function

Y (s) = 3
s − 2

+ 4
(s − 2)2

+ 5
s + 1

goal = compute the inverse Laplace transform y(t) = L−1 {Y (s)}

Modelling in Continuous Time - computing free evolutions and forced responses of LTI systems 5



• now let’s do this exercise. Let’s assume we started from an opportune u(t) and ARMA model
and initial conditions such that the general formula

Y (s) = M(s)
A(s) +

B(s)
A(s)U(s)

has brought us to this specific Y (s)

notes
Step 1: Identify the terms

Y (s) = 3
s − 2

+ 4
(s − 2)2

+ 5
s + 1

Here:
• λ1 = 2, with coefficients α1,1 = 3 and α1,2 = 4
• λ2 = −1, with coefficient α2,1 = 5

Modelling in Continuous Time - computing free evolutions and forced responses of LTI systems 6

• we get immediately this, by applying what we saw in the previous slides

notes
Step 2: Apply the inverse Laplace transform formula

by means of

L−1 { n!
(s − λ)n+1} = tneλt

we compute the inverse Laplace transform of each term:
• L−1 { 3

s − 2
} = 3e2t

• L−1 { 4
(s − 2)2

} = 4te2t

• L−1 { 5
s + 1

} = 5e−t
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• then we get this

notes
Step 3: Combine the results

then we have that the inverse Laplace transform y(t) is the sum of the individual
transforms, i.e.,

y(t) = 3e2t + 4te2t + 5e−t
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• then we get this

notes
Another Example: Inverse Laplace Transform with Complex Conjugate
Terms

let
Y (s) = 2s + 3

s2 + 2s + 5
and the goal to be to compute the inverse Laplace transform y(t) = L−1 {Y (s)}
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• assume this situation

notes
Step 1: Factor the denominator

note: s2 + 2s + 5 has complex conjugate roots, indeed

s2 + 2s + 5 = (s + 1)2 + 4

and thus
Y (s) = 2s + 3

(s + 1)2 + 4

Modelling in Continuous Time - computing free evolutions and forced responses of LTI systems 10

• note that we have complex conjugate pairs

notes
Step 2: Express in terms of standard forms

rewrite Y (s) to match the standard forms for inverse Laplace transforms involving
complex conjugates, i.e.,

Y (s) = 2(s + 1) + 1
(s + 1)2 + 4

= 2 ⋅ s + 1
(s + 1)2 + 4

+ 1
(s + 1)2 + 4

.
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• note that we have complex conjugate pairs

notes
Step 3: Apply the inverse Laplace transform formula

since
L−1 { s + a

(s + a)2 + b2} = e−at cos(bt),

L−1 { b
(s + a)2 + b2} = e−at sin(bt),

we have, for the various terms:

• L−1 {2 ⋅ s + 1
(s + 1)2 + 4

} = 2e−t cos(2t)

• L−1 { 1
(s + 1)2 + 4

} = 1
2

e−t sin(2t)
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• and here we are just using formulas

notes
Step 4: Combine the results

y(t) = 2e−t cos(2t) + 1
2

e−t sin(2t)
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• and here we are just using formulas

notes
Extremely important result

a LTI in free evolution behaves as a combination
of terms eλt , teλt , t2eλt , etc. for a set of different

λ’s and powers of t, called the modes of the system

Discussion: assuming that we have two modes, e−0.3t and e−1.6t , so that

y(t) = α1e−0.3t + α2e−1.6t .

What determines α1 and α2?
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• these signals are thus somehow describing the natural way a free evolution evolves
• we already saw them with Jordan forms, and we did not give them a name then
• but they have a specific name: they are the modes of a LTI
• these numbers are given by the initial conditions of the system

notes

second case: irrational U(s)
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•

notes
In this case we cannot use partial fractions decompositions as before

from Y (s) = M(s)
A(s)

+ B(s)
A(s)

U(s) we follow the algorithm

• find yfree(t) from PFDs of M(s)
A(s)

as before

• find the impulse response h(t) from PFDs of B(s)
A(s)

as before

• find yforced(t) as h ∗ u(t)
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• in this case we need to find the various terms independently

notes
Summarizing

Compute free evolutions and forced responses of LTI systems
using Laplace-based formulas (but only as procedural tools)

• Laplace the ARMA
• if u(t) admits a rational U(s) then write Y (s) = polynomial

polynomial
, do PFD, and do

inverse-Laplaces
• if u(t) does not admit a rational U(s), do similarly as before but do PFD only for

the free evolution and impulse response, and find the forced response by means of
convolution

Modelling in Continuous Time - computing free evolutions and forced responses of LTI systems 3



• you should now be able to do this, following the pseudo-algorithm in the itemized list

notes

Most important python code for this sub-module

Modelling in Continuous Time - computing free evolutions and forced responses of LTI systems 1

•

notes
Two essential libraries

• https://python-control.readthedocs.io/en/0.10.1/generated/
control.modal_form.html

• https://docs.sympy.org/latest/modules/physics/control/lti.html
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• these libraries provide you the necessary tools to perform modal analysis as here

notes

Self-assessment material
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•

notes
Question 61

Which type of LTI system may produce the impulse response h(t) represented in the
picture?

t

h(t)

Potential answers:

I: (wrong) first order
II: (wrong) second order

III: (correct) at least third order
IV: (wrong) I do not know

Solution 1:

Looking at the graph of h(t), we can notice two different behaviours: the first
part behaves like eαt cos(ωt) and it decays way faster than the second part,
which behaves like eβt . Here both α and β are negative real numbers, with
α < β. Hence this impulse response associates with two modes, the oscillating
one relating to a second order subsystem, and the non-oscillating one relating to
a first order subsystem. Thus the correct is that the system is at least third order.

t

h(t)

Solution 2:

Looking at the graph of h(t), we can notice two different behaviours: the first
part behaves like eαt cos(ωt) and it decays way faster than the second part, which
behaves like eβt . Hence this impulse response associates with two modes whose
Laplace transforms indicate a transfer function with two complex conjugates sta-
ble poles on the left of a real stable pole. Given that we can identify at least 3
distinct poles, it means that the system is of order at least three.

t

h(t)
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• see the associated solution(s), if compiled with that ones :)

notes
Question 62

Which type of LTI system may produce the impulse response h(t) represented in the
picture?

th(t)

Potential answers:

I: (wrong) first order
II: (wrong) second order

III: (wrong) third order
IV: (correct) at least fourth order
V: (wrong) I do not know

Solution 1:

The impulse response may be decomposed as a sum of two decaying oscillatory
behaviors, i.e., as h(t) = eαt cos(ω1t)+ eβt cos(ω2t), as in the figure below. The
first part eαt cos(ω1t) decays faster than the second part eβt cos(ω2t), and is also
associated to a cosine oscillating at a higher frequency than the second. Hence
this impulse response associates with two modes, both relating to a second order
subsystem. Thus the correct answer is a system whose order is at least four.

t

h(t)

Solution 2:

The impulse response may be decomposed as a sum of two decaying oscillatory
behaviors, i.e., as h(t) = eαt cos(ω1t) + eβt cos(ω2t), as in the figure below.
The first part eαt cos(ω1t) decays faster than the second part eβt cos(ω2t), and
is also associated to a cosine oscillating at a higher frequency than the second.
Hence this impulse response associates with two modes whose Laplace transforms
indicate a transfer function with two complex conjugates stable poles on the left
and with a bigger imaginary part of an other pair of complex conjugate stable
poles. Given that we can identify at least 4 distinct poles, it means that the
system is of order at least four.

t

h(t)
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• see the associated solution(s), if compiled with that ones :)

notes
Question 63

Which type of LTI system may produce the impulse response h(t) below?

0 0.5 1 1.5 2 2.5 3
0.2
0.4
0.6
0.8

1

t

h(
t)

Potential answers:

I: (wrong) first order
II: (wrong) second order

III: (correct) at least third order
IV: (wrong) I do not know

Solution 1:

Looking at the graph of h(t), we decompose it in the sum of two different modes:
the first one behaves like eαt , and the second part behaves like teβt .

0 0.5 1 1.5 2 2.5 3
0

0.2
0.4
0.6
0.8

1

t

h(
t)

Indeed h(t) above is given by the expression

exp(−10t) + 2t exp(−2t).

Hence this impulse response associates with two modes, one relating to a second
order subsystem and one relating to a first order system. Thus the correct answer
is a system whose order is at three.

Solution 2:

Looking at the graph of h(t), we decompose it in the sum of two different modes:
the first one behaves like eαt , and the second part behaves like teβt .

0 0.5 1 1.5 2 2.5 3
0

0.2
0.4
0.6
0.8

1

t

h(
t)

Indeed h(t) above is given by the expression

exp(−10t) + 2t exp(−2t).

Hence this impulse response associates with two modes whose Laplace transforms
indicate a transfer function with a single real stable pole on the left of a double
real stable pole. Given that we can identify at least 2 distinct poles, one with
multiplicity 2, it means that the system is of order at least three. Indeed, working
with Laplace transforms, the transfer function has to be, from a structural point
of view,

H(s) = n(s)
(s − α)(s − β)2

with n(s) a polynomial in s that is not easily identifiable given just a qualitative
plot.
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• see the associated solution(s), if compiled with that ones :)

notes
Question 64

What is the primary purpose of using Laplace transforms in solving LTI systems?

Potential answers:

I: (wrong) To convert differential equations into algebraic equations for
easier solving.

II: (correct) To transform convolution in the time domain into multiplication
in the Laplace domain.

III: (wrong) To directly compute the eigenvalues of the system matrix.
IV: (wrong) To eliminate the need for initial conditions in solving differential

equations.
V: (wrong) I do not know.

Solution 1:

The primary purpose of using Laplace transforms is to transform convolution
in the time domain into multiplication in the Laplace domain, simplifying the
solution of differential equations.
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• see the associated solution(s), if compiled with that ones :)

notes
Question 65

What is the correct form of the inverse Laplace transform of 1
(s − λ)2

?

Potential answers:

I: (wrong) eλt

II: (wrong) teλt

III: (correct) teλt

IV: (wrong) 1
2

t2eλt

V: (wrong) I do not know.

Solution 1:

The inverse Laplace transform of 1
(s − λ)2

is teλt .
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• see the associated solution(s), if compiled with that ones :)

notes
Question 66

What is the inverse Laplace transform of s + 1
(s + 1)2 + 4

?

Potential answers:

I: (wrong) e−t sin(2t)
II: (correct) e−t cos(2t)

III: (wrong) e−t cos(t)
IV: (wrong) e−t sin(t)
V: (wrong) I do not know.

Solution 1:

The inverse Laplace transform of s + 1
(s + 1)2 + 4

is e−t cos(2t).
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• see the associated solution(s), if compiled with that ones :)

notes
Question 67

In the ARMA model y (n) = an−1y (n−1) + . . . + a0y + bmu(m) + . . . + b0u, why is the
leading coefficient of y (n) typically set to 1?

Potential answers:

I: (wrong) To ensure the system is stable.
II: (wrong) To simplify the computation of eigenvalues.

III: (correct) To reduce the number of parameters and work with monic
polynomials.

IV: (wrong) To make the system linear time-invariant.
V: (wrong) I do not know.

Solution 1:

The leading coefficient of y (n) is typically set to 1 to reduce the number of
parameters and work with monic polynomials, which simplifies calculations.
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• see the associated solution(s), if compiled with that ones :)

notes
Question 68

What determines the coefficients α1 and α2 in the free evolution response
y(t) = α1e−0.3t + α2e−1.6t?

Potential answers:

I: (wrong) The eigenvalues of the system matrix.
II: (wrong) The input signal u(t).

III: (correct) The initial conditions of the system.
IV: (wrong) The poles of the transfer function.
V: (wrong) I do not know.

Solution 1:

The coefficients α1 and α2 are determined by the initial conditions of the system.
Modelling in Continuous Time - computing free evolutions and forced responses of LTI systems 9

• see the associated solution(s), if compiled with that ones :)

notes
Recap of sub-module
“computing free evolutions and forced responses of LTI systems”

• finding such signals require knowing a couple of formulas by heart
• partial fraction decomposition is king here, one needs to know how to do that
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• the most important remarks from this sub-module are these ones

notes

state space representations

Modelling in Continuous Time - state space representations 1

•

notes
Contents map

developed content units taxonomy levels
state of a system u1, e1
separation principle u1, e1

prerequisite content units taxonomy levels
ODE u1, e1

Modelling in Continuous Time - state space representations 2



•

notes
Main ILO of sub-module “state space representations”

Define the meaning of “state space representation” in
the context of linear and non-linear dynamical systems

Modelling in Continuous Time - state space representations 3

• by the end of this module you shall be able to do this

notes
Discussion: which information do you need to forecast accurately how long
you may use your cellphone before its battery hits 0%?

Modelling in Continuous Time - state space representations 4



• think at which factors are important for you

notes
Summarizing

these pieces of information contain all I need to forecast the future evolution of the
battery level:

• current level of charge of the battery
• how much I will use the phone in the future
• how healthy the battery of my phone is
• which environmental factors may induce additional effects (too warm, too cold)

Modelling in Continuous Time - state space representations 5

• the state condenses somehow the past
• from a control point of view this is important, because the state somehow works as a “mem-

ory”: to decide wich u is best right now, I just need to check what is the current state – I do
not care about what state the system was experiencing before

• so this is a concept that is very instrumental for control

notes
A simple model of the battery charge as a dynamical system

Time Remaining = Remaining Capacity
Discharge Rate

example: 2000mAh
500mA

= 4hours

rewriting as an ODE:
• y(t) = Q(t) = remaining battery capacity at time t (mAh)
• u(t) = I(t) = current discharge rate at time t (mA)

Ô⇒ ẏ = −u

Modelling in Continuous Time - state space representations 6



• let’s make a physical model of this
• and if we make it as a LTI ODE, given that the set of phenomena that we are assuming as

constituting the models do not comprise self-discharge, we shall have something that in free
evolution looks like ẏ = 0y = 0

• moreover if I draw positive current I decrease the charge, thus we get a ‘minus‘ sign associated
to the u

notes
What is a state?

{ ẋ = −u
y = x

“the current value of the state x(t) contains all the information necessary to forecast
the future evolution of the output y(t) and of the state x(t), assuming to know the
future u(t). I.e., to compute the future values y(t + τ) and x(t + τ) it is enough to
know the current x(t) and the current and future inputs u(t ∶ t + τ)”

Modelling in Continuous Time - state space representations 7

• the state condenses somehow the past
• from a control point of view this is important, because the state somehow works as a “mem-

ory”: to decide wich u is best right now, I just need to check what is the current state – I do
not care about what state the system was experiencing before

• so this is a concept that is very instrumental for control

notes
Question 69

In a spring-mass system, which of the following is a valid state variable?

Potential answers:

I: (wrong) The temperature of the spring.
II: (correct) The displacement of the mass from its equilibrium position.

III: (wrong) The color of the mass.
IV: (wrong) The external force applied to the system.
V: (wrong) I do not know.

Solution 1:

The displacement of the mass from its equilibrium position is a valid state variable
because it describes the system’s configuration and is essential for predicting its
future behavior. Temperature and color are irrelevant, and the external force is
an input, not a state.

Modelling in Continuous Time - state space representations 8



• see the associated solution(s), if compiled with that ones :)

notes
Question 70

Which of the following pairs of variables can fully describe the state of a spring-mass
system?

Potential answers:

I: (wrong) The mass of the spring and the stiffness of the mass.
II: (wrong) The external force and the displacement of the mass.

III: (correct) The displacement of the mass and the velocity of the mass.
IV: (wrong) The acceleration of the mass and the color of the spring.
V: (wrong) I do not know.

Solution 1:

The displacement of the mass and the velocity of the mass fully describe the state
of a spring-mass system because they capture the system’s current configuration
(displacement) and its rate of change (velocity). Mass, stiffness, external force,
and color are not state variables.

Modelling in Continuous Time - state space representations 9

• see the associated solution(s), if compiled with that ones :)

notes
What do we mean with “modelling a state-space dynamical system”?

Defining

{ ẋ = f (x, u, d , θ)
y = g (x, u, d , θ)

and
• the variables

• u = the inputs
• d = the disturbances
• x = the states vector
• y = the measured outputs

• the structure of the functions f and g
• the value of the parameters θ

Modelling in Continuous Time - state space representations 10



• these are called state space representations
• take home message: the input-output maps saw in other modules are not the unique ways of

representing systems

notes
State space model - definition

Ingredients:
• the number of inputs, outputs and state variables must be finite
• the differential equations must be first order
• the separation principle (the current value of the state contains all the information

necessary to forecast the future evolution of the outputs and of the state) shall be
satisfied

state space model = finite set of first-order differential equations that connect a finite
set of inputs, outputs and state variables so that they satisfy the separation principle

Modelling in Continuous Time - state space representations 11

• so, if we recall what we did in some modules ago, this was the formal definition of a state
space system

• remember that, first of all, it is a finite representation: for example a metal bar that is heating
up, we may describe it with partial differential equations. But this would mean considering
the temperature in every point, and this means an infinite number of points - no good

• we work with computers, and somehow we need always to consider a discrete and finite
number of objects. Thus we consider finite number of states

notes
State space representations - Notation

• u1, . . . , um = inputs
• x1, . . . , xn = states
• y1, . . . , yp = outputs
• d1, . . . , dq = disturbances

Modelling in Continuous Time - state space representations 12



• remember also that this is the standard notation (but the q in dq, for which there is no
standard notation)

• if you will use something different in your job you will look like a fool

notes
State space representations - Notation

ẋ = f (x, u)
y = g (x, u)

• f = state transition map
• g = output map

Modelling in Continuous Time - state space representations 13

• finally, we use this notation

notes

examples

Modelling in Continuous Time - state space representations 1



•

notes
RC-circuit

vR iR

vCV

v̇C = −
1

RC
vC +

1
RC

V (9)

or, using control-oriented names,

ẋ = − 1
RC

x + 1
RC

u y = x (10)

Modelling in Continuous Time - state space representations 2

• we start with the simplest dynamic system possible, that is a scalar first order system where
the dynamics are implied by the presence of the capacitor

• note that if we were not having the capacitor the system would have been a static one
• here we can change the names so to highlight what is the output and the input, i.e., what

we can steer
• here note that how much y grows depends on both y and u, and this dependence is “fixed”

by R and C
• qualitatively what happens if we put u = 0 but we have some initial tension?

notes
Generalization: exponential growth, scalar version

ẋ = αx + βu y = x (11)

Modelling in Continuous Time - state space representations 3



• the previous example can be generalized in this way
• we will see better later on that “exponentials” play a big role here, since if we neglect u

you see that we have that we must have that the derivative of y must be proportional to y
itself. Exponentials have this property (also sinusoids, but we know that sinusoids are complex
exponentials, because of Euler’s identities)

• we will see this better later on though
• here note that how much y grows depends on both y and u, and this dependence is “fixed”

by α and β

notes
Generalizing in an other way: RCL-circuits

e(t)

R

C

L

EOM: Kirchhoff laws Ô⇒ vL(t) = Ldi(t)
dt

vi(t) = Ri(t) vC(t) =
1
C ∫

t

0
i(τ)dτ

e(t) = vL(t) + vR(t) + vC(t) Ô⇒ e(t) = Ldi(t)
dt
+ Ri(t) + 1

C ∫
t

0
i(τ)dτ (12)

Modelling in Continuous Time - state space representations 4

• what happens if we add an inductor?
• the equations of motion can be derived from Kirchhoff’s laws, that can be summarized in this

way
• and then we can state that the tension in the generator must equal to the sum of the tensions

along the various components

notes
Generalizing in an other way: RCL-circuits part two

e(t) = Ldi(t)
dt
+ Ri(t) + 1

C ∫
t

0
i(τ)dτ (13)

can be rewritten as

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

˙
(∫

t

0
i(τ)dτ) = i(t)

i̇(t) = 1
L

e(t) − R
L

i(t) − 1
LC ∫

t

0
i(τ)dτ

(14)

that can be rewritten as
⎧⎪⎪⎪⎨⎪⎪⎪⎩

ẋ1 = x2

ẋ2 = 1
L

u(t) − R
L

x2 −
1

LC
x1

y = x2 (15)

Modelling in Continuous Time - state space representations 5



• for the purposes of the course it is convenient to do this rewriting
• and then this second rewriting, where we express the variables as states
• somehow it may have been more convenient to write x instead of y , but this is a sort of

nuisance that will not matter at all when you understood the messages from this course

notes
Exponential growth, matricial version
Generalization of all linear systems, thus also of “RCL circuits”

{ ẋ = Ax +Bu
y = Cx

Modelling in Continuous Time - state space representations 6

• this example generalizes the one saw before. Better to recall the geometrical interpretation
of a matrix times a vector, that highlights each column of A to be a direction in the space
where ẋ lives, and every component of x being thus how much that direction of that column
should be followed

• the same interpretation of columns times scalars follows for the term Bu. Here each term of
u

• also for this type of ODE we will have that exponentials play a big role

notes
Spring-mass systems
E.g., position of a cart fastened with a spring to a wall and subject to friction

x

m
k

f
F

EOM:
• force from the spring: Fx(t) = −kx(t)
• friction: Ff (t) = −f ẋ(t)
• applied force: F(t)
• Newton’s second law: ∑F = mẍ(t)

mẍ(t) = Fx(t) + Ff (t) + F(t) ↦ mẍ(t) = −kx(t) − f ẋ(t) + F(t)

(rewritable again as ẋ = Ax +Bu)
Modelling in Continuous Time - state space representations 7



• next example: a cart
• Newton’s laws of motion tell us the following
• and we can rewrite things again in this way
• note that this is thus another example of the linear system that we used to represent RCL

circuits

notes
Important message: these two systems are “the same”

x

m
k

f
F

e(t)

R

C

L

thus studying ẋ = Ax +Bu in means studying both systems simultaneously!
Modelling in Continuous Time - state space representations 8

• so we can conclude that essentially these two systems share the same structure, only with
different parameters

• so this means that studying the equations in general makes us “save time”, because we study
all these systems (and many more) in one shot

notes
Lotka-Volterra

• yprey ∶= prey
• ypred ∶= predator

{ ẏprey = αyprey − βypreyypred
ẏpred = −γypred + δypreyypred

./LotkaVolterraSimulator.ipynb

Modelling in Continuous Time - state space representations 9

./LotkaVolterraSimulator.ipynb


• of course not all the systems are of the type ẏ = Ay +Bu. This one is for example nonlinear,
since there is a product among the y ’s that cannot be captured by the linear relation above

• this example was seen before. More information and history behind it in https://en.
wikipedia.org/wiki/Lotka%E2%80%93Volterra_equations

• go through the python notebook for more information

notes
Van-der-Pol oscillator

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

ẋ1 = µ(x1 −
x3

1
3
− x2)

ẋ2 = x1
µ

(16)

./VanDerPolSimulator.ipynb

Modelling in Continuous Time - state space representations 10

• another interesting example is the oscillator here, that we will see in more details later on
• the nice property of this system is that it has an orbit that attracts all the remaining ones
• we will discuss this example a few times. If you are already now interested in reading about

it, check https://en.wikipedia.org/wiki/Van_der_Pol_oscillator
• go through the python notebook for more information

notes
Balancing robot

xw

yw
θw

xb

yb

θb

lw = radius of the wheel

lb = body-wheel’s center distance

mw = mass of the wheel

mb = mass of the body

Modelling in Continuous Time - state space representations 11

https://en.wikipedia.org/wiki/Lotka%E2%80%93Volterra_equations
https://en.wikipedia.org/wiki/Lotka%E2%80%93Volterra_equations
./VanDerPolSimulator.ipynb
https://en.wikipedia.org/wiki/Van_der_Pol_oscillator


• another example is a model of a segway
• here we will use this notation

notes
Balancing robot

(Ib +mb l2
b) θ̈b = +mb lbg sin (θb) −mb lb ẍw cos (θb) −

Kt

Rm
vm + (

KeKt

Rm
+ bf )(

ẋw

lw
− θ̇b)

( Iw
lw
+ lw mb + lw mw) ẍw = −mb lb lw θ̈b cos (θb) +mb lb lw θ̇2

b sin (θb) +
Kt

Rm
vm − (

KeKt

Rm
+ bf )(

ẋw

lw
− θ̇b)

(17)

Modelling in Continuous Time - state space representations 12

• the EOM can be found again with Newton’s laws
• this is a nonlinear system, since it contains some trigonometric transformations of the variables

notes
Insulin concentration

• x1 ∶= sugar concentration
• x2 ∶= insulin concentration
• u1 ∶= food intake
• u2 ∶= insulin intake
• c ∶= sugar concentration in fasting (person-specific)

{ ẋ2 = a21 (x1 − c) − a22x2 + b2u2 x1 ≥ c
ẋ2 = −a22x2 + b2u2 x1 < c

{ ẋ1 = −a11x1x2 − a12 (x1 − c) + b1u1 x1 ≥ c
ẋ1 = −a11x1x2 + b1u1 x1 < c

Modelling in Continuous Time - state space representations 13



• this is a switched system that represents in a very simplified way what happens to the body
when eating or taking artificial insuline

• depending on whether there is more or less sugar in the blood than what is the person specific
parameter c, then the body answers in different ways

• the main take home message for this model is that it tries to mimick biological phenomena
that are quite understood

• the model can then be used to design when / how much to eat and to inject insuline
• for more information towards biology see for example https://en.wikipedia.org/wiki/

Insulin, while for control-oriented explanations see for example “Model individualization for
artificial pancreas”, in Computer Methods and Programs in Biomedicine, Volume 171, April
2019, Pages 133-140, Messori et al.

notes
Summarizing

Define the meaning of “state space representation” in
the context of linear and non-linear dynamical systems

• recall the definition of state space model
• be sure to have interiorized the separation principle with some practical examples

Modelling in Continuous Time - state space representations 14

• you should now be able to do this, following the pseudo-algorithm in the itemized list

notes

Most important python code for this sub-module

Modelling in Continuous Time - state space representations 1
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•

notes
Important library

https://python-control.readthedocs.io/en/0.10.1/conventions.html#
state-space-systems

Modelling in Continuous Time - state space representations 2

• this is more or less a reference library

notes

Self-assessment material

Modelling in Continuous Time - state space representations 1
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•

notes
Question 71

What is the primary purpose of the separation principle in state space representations?

Potential answers:

I: (wrong) To ensure that the system has an infinite number of states.
II: (wrong) To eliminate the need for inputs in the system model.

III: (correct) To ensure that the current state contains all information needed
to predict future behavior.

IV: (wrong) To simplify the computation of system eigenvalues.
V: (wrong) I do not know.

Solution 1:

The separation principle ensures that the current state contains all the information
necessary to predict the future evolution of the system, given the future inputs.
This is a fundamental property of state space representations.

Modelling in Continuous Time - state space representations 2

• see the associated solution(s), if compiled with that ones :)

notes
Question 72

Which of the following is a valid state variable in a state space representation of a
dynamical system?

Potential answers:

I: (wrong) The external force applied to the system.
II: (correct) The displacement of a mass in a spring-mass system.

III: (wrong) The color of the system components.
IV: (wrong) The temperature of the environment.
V: (wrong) I do not know.

Solution 1:

The displacement of a mass in a spring-mass system is a valid state variable
because it describes the system’s configuration and is essential for predicting its
future behavior. External forces, color, and environmental temperature are not
state variables.

Modelling in Continuous Time - state space representations 3



• see the associated solution(s), if compiled with that ones :)

notes
Question 73

What does the state transition map f in a state space representation describe?

Potential answers:

I: (wrong) The relationship between inputs and outputs.
II: (correct) The evolution of the state variables over time.

III: (wrong) The effect of disturbances on the system.
IV: (wrong) The stability of the system.
V: (wrong) I do not know.

Solution 1:

The state transition map f describes how the state variables evolve over time
based on the current state and inputs. It is a key component of state space
representations. Modelling in Continuous Time - state space representations 4

• see the associated solution(s), if compiled with that ones :)

notes
Question 74

What is the role of the output map g in a state space representation?

Potential answers:

I: (wrong) To define the system’s stability.
II: (wrong) To describe the evolution of the state variables.

III: (correct) To relate the state variables and inputs to the measured outputs.
IV: (wrong) To eliminate the need for disturbances in the model.
V: (wrong) I do not know.

Solution 1:

The output map g relates the state variables and inputs to the measured outputs.
It defines how the system’s internal state is reflected in the observable outputs.

Modelling in Continuous Time - state space representations 5



• see the associated solution(s), if compiled with that ones :)

notes
Question 75

Which of the following pairs of variables is sufficient to describe the state of a simple
pendulum system?

Potential answers:

I: (wrong) The mass of the pendulum and the length of the string.
II: (wrong) The external torque and the angular displacement.

III: (correct) The angular displacement and the angular velocity.
IV: (wrong) The color of the pendulum and the gravitational constant.
V: (wrong) I do not know.

Solution 1:

The angular displacement and the angular velocity are sufficient to describe the
state of a simple pendulum system because they capture the system’s current
configuration (displacement) and its rate of change (velocity). Mass, length,
external torque, and color are not state variables.

Modelling in Continuous Time - state space representations 6

• see the associated solution(s), if compiled with that ones :)

notes
Exercise: find which parts of these paragraphs are correct and which ones
are wrong

The RCL circuit can be modeled by a second-order linear differential equation where
the inductance, resistance, and capacitance determine the system’s resonance
frequency. Interestingly, in an underdamped RCL circuit, the system will always return
to equilibrium without oscillating, which reflects the energy dissipation in the resistor.

Modelling in Continuous Time - state space representations 7



• the solution is:
• RCL Circuit Misconception: The statement "the system will always return to equilibrium

without oscillating" is incorrect. An underdamped RCL circuit does oscillate before eventually
returning to equilibrium due to the resistance.

notes
Exercise: find which parts of these paragraphs are correct and which ones
are wrong

The Lotka-Volterra model is a non-linear system that describes interactions between
two species: one as a predator and the other as prey. The model assumes that the
growth rate of the prey population is proportional to the current population size, which
would mean that the population would grow indefinitely in the absence of predators.
Similarly, the predator population is dependent solely on the availability of prey,
implying that predators could not survive without prey even if there were other food
sources available.

Modelling in Continuous Time - state space representations 8

• the solution is:
• Lotka-Volterra Misconception: The claim that "predators could not survive without prey even

if there were other food sources available" oversimplifies the model. The model assumes that
the prey is the only food source, but in reality, predators might have alternative food sources.

notes
Exercise: find which parts of these paragraphs are correct and which ones
are wrong

The Van der Pol oscillator is an example of a non-linear system that exhibits limit cycle
behavior. This behavior is critical as it shows how the system can maintain a stable
oscillation regardless of initial conditions, which is a feature not present in linear
oscillators. It’s important to note that the Van der Pol oscillator can only have a single
limit cycle, and any perturbations will lead to a quick return to this cycle, indicating
that the system is highly stable.

Modelling in Continuous Time - state space representations 9



• the solution is:
• Van der Pol Oscillator Misconception: The statement "the Van der Pol oscillator can only

have a single limit cycle" is correct, but saying that "any perturbations will lead to a quick
return to this cycle, indicating that the system is highly stable" is misleading. The Van der
Pol oscillator returns to its limit cycle, but the speed and nature of this return depend on
the systems parameters, and calling it "highly stable" is misleading and pushes persons into
thinking it’s more stable than it actually is.

notes
Recap of sub-module “state space representations”

• a set of variables is a state vector if it satisfies for that model the separation
principle, i.e., the current state vector “decouples” the past with the future

• state space models are finite, and first order vectorial models

Modelling in Continuous Time - state space representations 10

• the most important remarks from this sub-module are these ones

notes

state space from ARMA (and viceversa)

Modelling in Continuous Time - state space from ARMA (and viceversa) 1



•

notes
Contents map

developed content units taxonomy levels
realization u1, e1

prerequisite content units taxonomy levels
ARMA model u1, e1
state space model model u1, e1
matrix inversion u1, e1
Laplace transforms u1, e1

Modelling in Continuous Time - state space from ARMA (and viceversa) 2

•

notes
Main ILO of sub-module “state space from ARMA (and viceversa)”

Determine the state space structure of an
LTI system starting from an ARMA ODE

Modelling in Continuous Time - state space from ARMA (and viceversa) 3



• by the end of this module you shall be able to do this

notes
ARMA models

y (n) = an−1y (n−1) + . . . + a0y + bmu(m) + . . . + b0u

Modelling in Continuous Time - state space from ARMA (and viceversa) 4

• the an−1y (n−1) + . . . + a0y part is called Auto-Regressive
• the bmu(m) + . . . + b0u part is called Moving-Average
• these names make more sense in discrete time systems of the type y(k + n) = an−1y(k + n −

1) + . . . + a0y(k) + bmu(k +m) + . . . + b0u(k) and k a discrete time index. Here we see that
the a’s correspond to an autoregression, and the b’s to the coefficients of a moving average.
In any case we use ARMA for both continuous and discrete dynamics of these types

notes
State space representations - Notation

ẋ1 = f1 ( x1, . . . , xn, u1, . . . , um )
...

ẋn = fn ( x1, . . . , xn, u1, . . . , um )

y1 = g1 ( x1, . . . , xn, u1, . . . , um )
...

yp = gp ( x1, . . . , xn, u1, . . . , um )

ẋ = f (x, u)
y = g (x, u)

• f = state transition map
• g = output map

Modelling in Continuous Time - state space from ARMA (and viceversa) 5



• notation wide, remember that state space means first order ODEs
• they will thus look like these ones, in general
• we can also compress the notation in this way
• remember that bold non-capital fonts mean vectors in this course
• and we give to the various things these names

notes
This module:

ARMA models state space models

But why do we study this?
because from physical laws we get ARMA,
but with state space we get more explainable models

Modelling in Continuous Time - state space from ARMA (and viceversa) 6

• we will learn how to do two simple operations
• we will only scratch the surface though, there is a lot of material to cover here and you will

do it much better in other modules / courses
• and often one does the “ARMA to SS” operation

notes

From state space to ARMA

Modelling in Continuous Time - state space from ARMA (and viceversa) 1



•

notes
SS to ARMA
Tacit assumption: x(0) = 0

{ ẋ = Ax +Bu
y = Cx +Du

→ L({ ẋ = Ax +Bu
y = Cx +Du

)

→ { sX = AX +BU
Y = CX +DU

→ { (sI −A)X = BU
Y = CX +DU

→ { X = (sI −A)−1BU (∗)
Y = CX +DU

⇒ Y = (C(sI −A)−1B +D)U

⇒ Y (s) = polynomial in s
polynomial in s

U(s)
Modelling in Continuous Time - state space from ARMA (and viceversa) 2

• This slide shows the step-by-step derivation of the transfer function from the state-space
representation using Laplace transforms.

• the assumption x(0) = 0 simplifies the Laplace transform of the derivative.
• the key step where X = (sI −A)−1BU is derived is the foundation for the transfer function.
• the final result, Y (s) = polynomial in s

polynomial in s
U(s), is the ARMA representation of the system.

• For computations, I recommend using tools like simpy for symbolic algebra, but you should
be able to handle 2x2 systems by hand.

notes
A note on the last formula

Y (s) = polynomial in s
polynomial in s

U(s) ↦ ARMA:

Y (s) = s + 3
2s3 + 3s

U(s) ↦ 2˙̇ ˙y + 3ẏ = u̇ + 3u

Modelling in Continuous Time - state space from ARMA (and viceversa) 3



• This slide connects the transfer function to the ARMA model in the time domain.
• the numerator and denominator polynomials in s directly translate to differential equations

in the time domain.
• the example shows how the transfer function Y (s) = s + 3

2s3 + 3s
U(s) corresponds to the differ-

ential equation 2˙̇ ˙y + 3ẏ = u̇ + 3u.
• this is a key step in understanding the relationship between the Laplace domain and time

domain.

notes
A note on the second to last formula

Y = (C(sI −A)−1B +D)U

DISCLAIMER: in this course we consider SISO systems, thus C and B = vectors, and
D = scalar (if present)

Modelling in Continuous Time - state space from ARMA (and viceversa) 4

• that this course focuses on Single Input Single Output (SISO) systems, which simplifies the
matrices C , B, and D.

• C and B are vectors, and D is a scalar (often zero in many systems).
• this simplification is important for understanding the structure of the transfer function.
• MIMO (Multiple Input Multiple Output) systems in other courses!

notes
Numerical Example: 2 × 2 State-Space to ARMA

A = [1 2
3 4
] , B = [1

0
] , C = [1 0] , D = [0]

Modelling in Continuous Time - state space from ARMA (and viceversa) 5



• this numerical example is used to illustrate the conversion from state-space to ARMA.
• this is a 2x2 system, which is manageable by hand and helps students understand the process.
• the matrices A, B, C , and D are chosen for simplicity, but the method is general.

notes
Numerical Example: 2 × 2 State-Space to ARMA
Step 1: State-Space Equations

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

ẋ1 = x1 + 2x2 + u
ẋ2 = 3x1 + 4x2

y = x1

Modelling in Continuous Time - state space from ARMA (and viceversa) 6

• the state-space equations explicitly using the given matrices.
• ẋ1 and ẋ2 are linear combinations of the states and the input u.
• the output y is simply the first state variable x1.

notes
Numerical Example: 2 × 2 State-Space to ARMA
Step 2: Laplace Transform

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

sX1(s) = X1(s) + 2X2(s) +U(s)
sX2(s) = 3X1(s) + 4X2(s)
Y (s) = X1(s)

Modelling in Continuous Time - state space from ARMA (and viceversa) 7



• Apply the Laplace transform to the state-space equations, assuming zero initial conditions.
• the Laplace transform converts differential equations into algebraic equations in s.
• Y (s) = X1(s), which connects the output directly to the first state variable.

notes
Numerical Example: 2 × 2 State-Space to ARMA
Step 3: Rearrange in Matrix Form

⎧⎪⎪⎨⎪⎪⎩

(sI −A)X(s) = BU(s)
Y (s) = CX(s) +DU(s)

implies
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎡⎢⎢⎢⎢⎣

s − 1 −2
−3 s − 4

⎤⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎣

X1(s)
X2(s)

⎤⎥⎥⎥⎥⎦
=
⎡⎢⎢⎢⎢⎣

1
0

⎤⎥⎥⎥⎥⎦
U(s)

Y (s) = [1 0]
⎡⎢⎢⎢⎢⎣

X1(s)
X2(s)

⎤⎥⎥⎥⎥⎦

Modelling in Continuous Time - state space from ARMA (and viceversa) 8

• Rearrange the Laplace-transformed equations into matrix form.
• the output equation Y (s) = CX(s) remains simple due to the choice of C .

notes
Numerical Example: 2 × 2 State-Space to ARMA
Step 4: Solve for X(s)

X(s) = (sI −A)−1BU(s)

(sI −A) = [s − 1 −2
−3 s − 4

]

(sI −A)−1 = 1
(s − 1)(s − 4) − (−2)(−3)

[s − 4 2
3 s − 1

]

det(sI −A) = (s − 1)(s − 4) − 6 = s2 − 5s − 2

(sI −A)−1 = 1
s2 − 5s − 2

[s − 4 2
3 s − 1

]

Modelling in Continuous Time - state space from ARMA (and viceversa) 9



• Solve for X(s) by computing (sI −A)−1.
• the determinant det(sI −A), which appears in the denominator of the transfer function, is

key.
• the step-by-step computation of the inverse matrix is assumed as a given skill.

notes
Numerical Example: 2 × 2 State-Space to ARMA
Step 5: Multiply by B

Now, multiply by B:

X(s) = 1
s2 − 5s − 2

[s − 4 2
3 s − 1

] [1
0
]U(s) = 1

s2 − 5s − 2
[s − 4

3
]U(s)

Modelling in Continuous Time - state space from ARMA (and viceversa) 10

• Multiply (sI −A)−1 by B to obtain X(s).
• this step simplifies the expression for X(s).
• X1(s) and X2(s) are now expressed in terms of U(s).

notes
Numerical Example: 2 × 2 State-Space to ARMA
Step 6: Solve for Y (s)

Substitute X(s) into the output equation:

Y (s) = CX(s) +DU(s) = [1 0] [X1(s)
X2(s)

] = X1(s)

Thus:
Y (s) = s − 4

s2 − 5s − 2
U(s)

Modelling in Continuous Time - state space from ARMA (and viceversa) 11



• Substitute X(s) into the output equation to find Y (s).
• Y (s) is directly proportional to X1(s).

notes
Numerical Example: 2 × 2 State-Space to ARMA
Step 7: Final Result

Transfer function H(s):

H(s) = Y (s)
U(s)

= s − 4
s2 − 5s − 2

and from this we get the ARMA representation of the system as before

Modelling in Continuous Time - state space from ARMA (and viceversa) 12

• this is the ARMA representation of the system.

notes

From ARMA to SS

Modelling in Continuous Time - state space from ARMA (and viceversa) 1



•

notes
Starting point (blending Laplace notation with time notation)

y(t) = b(s)
a(s)

u(t) = b1sn−1 + . . . + bn
sn + a1sn−1 + . . . + an

u(t)

Modelling in Continuous Time - state space from ARMA (and viceversa) 2

• our goal is now that of converting an ARMA model to a state-space representation.
• the starting point is the transfer function in the Laplace domain.
• the numerator and denominator polynomials define the ARMA model.

notes
Building block = the integrator (block)

y 1
s ∫

t

−∞

ydt

ẏ 1
s

y

sY
1
s Y

Modelling in Continuous Time - state space from ARMA (and viceversa) 3



• the integrator block is a fundamental building block for state-space representations.
• the integrator relates to differentiation and integration in the time domain.
• the integrator is key to constructing state variables.

notes
How do we use integrators?

˙̇ ˙y + a1ÿ + a2ẏ + a3y = b1u
↓

˙̇ ˙y = −a1ÿ − a2ẏ − a3y + b1u

Modelling in Continuous Time - state space from ARMA (and viceversa) 4

• This shows how to rearrange a higher-order differential equation into a form suitable for state-
space representation.

• the highest derivative is expressed as a function of lower derivatives and the input.
• this step is crucial for defining the state variables.

notes
Towards SS with a useful trick

y(t) = b(s)
a(s)

u(t) = b1sn−1 + . . . + bn
sn + a1sn−1 + . . . + an

u(t)→

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

xn(t) =
1

a(s)
u(t)

y(t) = b(s)xn(t)

Modelling in Continuous Time - state space from ARMA (and viceversa) 5



• We then use the trick of defining an intermediate variable xn(t) to simplify the conversion
process.

• xn(t) is the output of the denominator dynamics driven by the input u(t).
• this trick separates the AR (denominator) and MA (numerator) parts of the system.

notes
This is an AR model on xn

xn(t) =
1

a(s)
u(t) Ô⇒ a(s)xn(t) = u(t)

implies

xn =
1
s

xn−1 → xn−1 = sxn →

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

xn−1 = sxn
xn−2 = s2xn
...

x2 = sn−2xn
x1 = sn−1xn

Modelling in Continuous Time - state space from ARMA (and viceversa) 6

• The intermediate variable xn(t) leads to the definition of state variables x1, x2, . . . , xn.
• each state variable is a scaled version of the next, with the scaling factor being s.
• this step defines the state vector x.

notes
This is an AR model on xn

xn(t) =
1

a(s)
u(t) Ô⇒ a(s)xn(t) = u(t)

implies

u + 1
s

1
s

. . . 1
s

1
s

xn
x1 x2 xn−2 xn−1

+

+
...

+

+

+

a1

a2

an−2

an−1

an

Modelling in Continuous Time - state space from ARMA (and viceversa) 7



• We now use a block diagram to illustrate the relationship between the state variables.
• the state variables are interconnected through integrators.
• this structure is the foundation of the state-space representation.

notes
Completing the picture (a MA from xn to y)

y(t) = b(s)xn(t) = b1x1(t) + . . . + bnxn(t)

u + 1
s

1
s

. . . 1
s

1
s

bn + y
x1 x2 xn−2 xn−1 xn

+
+
⋅

+
+
+

a1

a2

an−2

an−1

an

+

+
⋅

+

+b1

b2

bn−2

bn−1

Modelling in Continuous Time - state space from ARMA (and viceversa) 8

• the output y(t) is constructed as a linear combination of the state variables.
• the coefficients of the linear combination are the numerator coefficients b1, b2, . . . , bn.
• this step completes the state-space representation.

notes
From concepts to formulas

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

y(t) = b1x1(t) + . . . + bnxn(t)

ẋ1(t) = −a1x1(t) − . . . − anxn(t) + u(t)

ẋi(t) = xi−1(t)

→ { ẋ = Ax +Bu
y = Cx +Du

ẋ ∶=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ẋ1
ẋ2
ẋ3
...

ẋn

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−a1 −a2 . . . . . . −an
1 0 . . . . . . 0
0 1 0 . . . 0

. . .
. . .

. . .

0 1 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x1
x2
x3
...

xn

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
0
0
...

0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

u
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• This presents the final state-space equations in matrix form.
• the structure of the A matrix is then in control canonical form.
• the B vector has a single non-zero entry, corresponding to the input u(t).

notes
And y?

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

y(t) = b1x1(t) + . . . + bnxn(t)

ẋ1(t) = −a1x1(t) − . . . − anxn(t) + u(t)

ẋi(t) = xi−1(t)

→ { ẋ = Ax +Bu
y = Cx +Du

y = [b1 b2 b3 . . . bn]

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x1
x2
x3
...

xn

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Modelling in Continuous Time - state space from ARMA (and viceversa) 10

• The output equation is constructed from the state variables.
• the C matrix contains the numerator coefficients b1, b2, . . . , bn.
• this step completes the state-space representation.

notes
From ARMA to state space (in Control Canonical Form)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ẋ1
ẋ2
ẋ3
...

ẋn

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−a1 −a2 . . . . . . −an
1 0 . . . . . . 0
0 1 0 . . . 0

. . .
. . .

. . .

0 1 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x1
x2
x3
...

xn

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
0
0
...

0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

u

y = [b1 b2 b3 . . . bn]

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x1
x2
x3
...

xn

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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• The state-space representation in control canonical form.
• the structure of the A matrix becomes upper Hessenberg with a diagonal of ones.
• this form is particularly useful for control design and analysis, you will see it very often.

notes
Matlab / Python implementation

[A, B, C, D] = tf2ss([b1 b2 .. bn], [1 a1 a2 .. an])

Modelling in Continuous Time - state space from ARMA (and viceversa) 12

• the MATLAB/Python function tf2ss is used for converting transfer functions to state-space
form.

• the input arguments are the numerator and denominator coefficients of the transfer function.
• this function automates the process of deriving the state-space matrices.
• you can use this function to verify your hand calculations only for small examples, at work

don’t do computations by hand

notes
Summarizing

Determine the state space structure of an
LTI system starting from an ARMA ODE

• there are some formulas, that you may simply know by heart, or that you may
want to understand

• for understanding there is the need to get how the transformations work, and
what is what

• likely the most important point is that to go from ARMA to SS the (likely) most
simple strategy is to build the states as a chain of integrators, and ladder on top
of that

Modelling in Continuous Time - state space from ARMA (and viceversa) 13



• you should now be able to do this, following the pseudo-algorithm in the itemized list

notes

Most important python code for this sub-module

Modelling in Continuous Time - state space from ARMA (and viceversa) 1

•

notes
These functions have also their opposite, i.e., tf2ss

• https://docs.scipy.org/doc/scipy/reference/generated/scipy.
signal.ss2tf.html

• https://python-control.readthedocs.io/en/latest/generated/
control.ss2tf.html

Modelling in Continuous Time - state space from ARMA (and viceversa) 2
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• in the references you will see much more information than what is given in this module

notes

Self-assessment material

Modelling in Continuous Time - state space from ARMA (and viceversa) 1

•

notes
Question 76

What is the role of (sI −A)−1 in the derivation of the transfer function from a
state-space model?

Potential answers:

I: (wrong) It represents the output matrix C .
II: (correct) It is used to solve for the state vector X(s) in the Laplace

domain.
III: (wrong) It defines the input matrix B.
IV: (wrong) It is the Laplace transform of the state transition matrix.
V: (wrong) I do not know

Solution 1:

(sI − A)−1 is used to solve for the state vector X(s) in the Laplace domain. It
allows us to express X(s) in terms of the input U(s), which is then used to derive
the transfer function.
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• see the associated solution(s), if compiled with that ones :)

notes
Question 77

What is the structure of the A matrix in the control canonical form of a state-space
model?

Potential answers:

I: (correct) An upper Hessenberg matrix with a lower diagonal of ones and
coefficients on the first row from the denominator polynomial.

II: (wrong) A diagonal matrix with the eigenvalues of the system.
III: (wrong) A lower triangular matrix with zeros on the diagonal.
IV: (wrong) A symmetric matrix with off-diagonal elements equal to zero.
V: (wrong) I do not know

Solution 1:

The A matrix in control canonical form is an upper Hessenberg matrix with a
lower diagonal of ones and coefficients from the denominator polynomial. This
structure is particularly useful for control design and analysis.

Modelling in Continuous Time - state space from ARMA (and viceversa) 3

• see the associated solution(s), if compiled with that ones :)

notes
Question 78

What is the purpose of the integrator block in the conversion from ARMA to
state-space models?

Potential answers:

I: (wrong) To differentiate the input signal.
II: (wrong) To invert the Laplace transform of the output.

III: (correct) To construct the state variables as a chain of scaled integrators.
IV: (wrong) To compute the determinant of the state matrix.
V: (wrong) I do not know

Solution 1:

The integrator block is used to construct the state variables as a chain of scaled
integrators. This allows us to define the state vector x and build the state-space
representation.
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• see the associated solution(s), if compiled with that ones :)

notes
Question 79

What does the transfer function H(s) = Y (s)
U(s)

represent in the context of state-space

models?

Potential answers:

I: (wrong) The state transition matrix.
II: (wrong) The input matrix B.

III: (wrong) The determinant of the state matrix.
IV: (correct) The relationship between the input U(s) and the output Y (s)

in the Laplace domain.
V: (wrong) I do not know

Solution 1:

The transfer function H(s) = Y (s)
U(s)

represents the relationship between the input

U(s) and the output Y (s) in the Laplace domain. It is derived from the state-
space model and encapsulates the system’s dynamics.

Modelling in Continuous Time - state space from ARMA (and viceversa) 5

• see the associated solution(s), if compiled with that ones :)

notes
Question 80

In the context of SISO systems, what are the dimensions of the matrices C and B in a
state space representation?

Potential answers:

I: (wrong) C is a scalar, and B is a vector.
II: (correct) C is a row vector, and B is a column vector.

III: (wrong) C is a square matrix, and B is a scalar.
IV: (wrong) C is a column vector, and B is a row vector.
V: (wrong) I do not know

Solution 1:

In SISO systems, C is a row vector (1xn), and B is a column vector (nx1). This
is because C maps the state vector to the output, and B maps the input to the
state vector.
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• see the associated solution(s), if compiled with that ones :)

notes
Question 81

Given the state-space matrices A = [1 2
3 4
], B = [1

0
], C = [1 0], and D = [0], what is

the transfer function H(s)?

Potential answers:

I: (correct) H(s) = s − 4
s2 − 5s − 2

II: (wrong) H(s) = s − 1
s2 − 5s − 2

III: (wrong) H(s) = s + 3
s2 − 5s − 2

IV: (wrong) H(s) = s − 2
s2 − 5s − 2

V: (wrong) I do not know

Solution 1:

The transfer function is H(s) = s − 4
s2 − 5s − 2

. This is derived by solving the state-
space equations and computing (sI −A)−1B, followed by multiplying by C .

Modelling in Continuous Time - state space from ARMA (and viceversa) 7

• see the associated solution(s), if compiled with that ones :)

notes
Recap of sub-module “state space from ARMA (and viceversa)”

• one can go from ARMA to state space and viceversa
• we did not see this, but watch out that the two representations are not equivalent:

there are systems that one can represent with state space and not with ARMA,
and viceversa

• typically state space is more interpretable, and tends to be the structure used
when doing model predictive control

Modelling in Continuous Time - state space from ARMA (and viceversa) 8



• the most important remarks from this sub-module are these ones

notes

Connections between eigendecompositions and free evolution in
continuous time LTI state space systems

Modelling in Continuous Time - Connections between eigendecompositions and free evolution in continuous time LTI state space systems 1

•

notes
Contents map

developed content units taxonomy levels
modal analysis u1, e1

prerequisite content units taxonomy levels
LTI ODE u1, e1
state space system u1, e1
eigenvalue u1, e1
eigenspace u1, e1
phase portrait u1, e1
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•

notes
Main ILO of sub-module
“Connections between eigendecompositions and free evolution in continuous time LTI state space systems”

Analyse the structure of the free evolution of the state vari-
ables by means of the eigendecomposition of the system matrix

Modelling in Continuous Time - Connections between eigendecompositions and free evolution in continuous time LTI state space systems 3

• by the end of this module you shall be able to do this

notes
Important initial remark

focus = LTI in state space and free evolution, meaning u(t) = 0, and thus

{ ẋ = Ax +Bu
y = Cx

↦ { ẋ = Ax
y = Cx
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• the first simplification that we consider in this module is that we ignore the forced response

notes
. . . and then an important disclaimer

{ ẋ = Ax
y = Cx

the module ignores what happens if A is non-diagonalizable

Modelling in Continuous Time - Connections between eigendecompositions and free evolution in continuous time LTI state space systems 5

• for the sake of aiding graphical intuition the module ignores what the visualizations should be
in that cases where A is not diagonalizable (and thus should involve generalized eigenspaces
- a concept that the reader may ignore what they are, for the sake of this course)

notes
Roadmap

• set the focus just on x, and not on y
• get a graphical intuition of what Ax means
• interpreting eigenspaces in the real of LTI continuous time systems
• adding the “superposition principle” ingredient to the mixture

Modelling in Continuous Time - Connections between eigendecompositions and free evolution in continuous time LTI state space systems 6



• we will follow a specific pattern to get to the final point of the module

notes

What does Ax mean, graphically?

Modelling in Continuous Time - Connections between eigendecompositions and free evolution in continuous time LTI state space systems 1

•

notes
The physical meaning of the operation ẋ = Ax

x1

x2

ẋ1

ẋ2
A

Ô⇒ structure of A determines how the time derivative ẋ is, and how the time
derivative is determines the stability and time-evolution properties of the system. E.g.,

span (A) = [+1
−1
] Ô⇒ if x1 grows then x2 diminishes, and viceversa
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• then if we see that the columns of A generate this span, then we know that this must happen
to the system

• recall that x1 and x2 are often physically interpretable variables, such as position and velocity.
Being able to say sentences like this one means being able to describe in a qualitative way
the mechanisms underlying the evolution of the system

notes
How may we represent vectors and matrices?

x = [3
2
] A = [2 1 −1

1 −1 3
]

x

a1

a2

a3
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• in the cartesian plane we can represent these objects as opportune (column) vectors
• note that due to our conventions we will draw a matrix A as a set of column vectors
• a1 is the first column, and so on

notes
But what is a vector?

[x1
x2
] = [1

0
] x1 + [

0
1
] x2 = e1x1 + e2x2

e1

e2

[x1
x2
]
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• a vector is actually a combination of the elements of the canonical basis
• in a sense, the vector itself is defined by this basis
• also this concept will be expanded in later on courses . . .
• consider this also a sort of superposition of the effects

notes
So, what is a matrix-vector product, geometrically?

x = [x1
x2
] A = [ 1 2

−1 1
] Ô⇒ Ax =?

e1

e2

a1

a2

[x1
x2
]

Modelling in Continuous Time - Connections between eigendecompositions and free evolution in continuous time LTI state space systems 5

• and this is a re-interpretation of the same thing we saw before
• matrix vector multiplication means multiplying each of the columns for the corresponding

scalar, BUT this time we can see the whole operation
• the columns of the matrix are the transformed versions of the canonical basis, then the vector
[ab]T goes expanding / compressing / flipping (depending on the values of its components)
each of the transformed vectors independently

notes

The effect of eigenspaces

Modelling in Continuous Time - Connections between eigendecompositions and free evolution in continuous time LTI state space systems 1



•

notes
Eigenvectors of a square matrix

a1

a2

are there some directions that get only stretched, i.e., that do not rotate?

[2 1
1 2
] [x1

x2
] = λ [x1

x2
] ↦ vλ=1 = [

1
−1
] , vλ=3 = [

1
1
]
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• note that we are defining things in a way for which this concept relates only to the case of
square matrices

• the concept of eigenvector relates to the concept of warping the fabric of space
• if you warp space in this way as this matrix says, are there some ’lines’ that remain untouched

by the transformation? I.e., that do not rotate, but only get compressed or stretched?
• in this specific case there are two: the one defined by [α, α]T , and the one defined by [−α, α]T

• formally the question can be formulated in this way, where both λ and x are variables that
shall be identified (i.e., read this as “for which x and α does this happen?”)

• λ, the eigenvalues, should be interpreted as the “stretching factors”, while x is any element
within this “line that does not rotate”

• from the physical intuitions that we derive by looking at how the fabric of space warps, we
get these two guesses

• putting these two guesses in the equation we see that they verify it, so they are actually the
objects we were looking for

notes
Eigenspaces = subspaces spanned by the eigenvectors-eigenvalues pairs

a1

a2

span (vλ=3)

span (vλ=1)

eigenspaces = subspaces spanned by the eigenvectors

[2 1
1 2
] [x1

x2
] = λ [x1

x2
] ↦ vλ=1 = [

1
−1
] , vλ=3 = [

1
1
]
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• the eigenspaces are then that subspaces that are defined by the eigenvectors
• note that each eigenvalue has its own eigenvector – even if this is a bit imprecise; we will see

the full picture when we discuss Jordan forms in a few units

notes
Eigenvectors: sometimes you may seem them from the transformation of
the hypercube, sometimes you don’t

a1

a2
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• there is a problem with visualizing eigenvalues, though: sometimes eigenvalues may be com-
plex (something that is associated to rotation, as we will see soon)

• thus for matrices that perform rotations of the fabric the graphical approach seen before
cannot apply

• very instrumental to understand why is the video from 3Blue1Brown https://www.youtube.
com/watch?v=v0YEaeIClKY&ab_channel=3Blue1Brown

notes
Why do we like eigenspaces?

a1

a2
span (vλ=3)

span (vλ=1)

because ẋ = λx Ô⇒ “keep moving along that line”
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• the eigenspaces are so that if the initial condition of the system is on that subspace, then the
direction of motion is aligned with that subspace, and this means that the system will stay
there

notes
Why do we like eigenspaces? Take 2

span (vλ1)

span (vλ2)

superposition principle Ô⇒ one can caracterize the whole phase portrait
Modelling in Continuous Time - Connections between eigendecompositions and free evolution in continuous time LTI state space systems 6

• moreover the eigenvectors may define also where the system will end up in free evolution
starting from a generic point

• this concept is connected with the one of “mode of a system”

notes
Why do we like eigenspaces? Take 3

span (vλ1)

span (vλ2)

the trajectory along each eigenspace is driven by a first order differential equation
Ô⇒ if x0 ∈ span(vλ), then x(t) = eλtx0

Modelling in Continuous Time - Connections between eigendecompositions and free evolution in continuous time LTI state space systems 7



• finally we get that the movement along each specific eigenspace is essentially like ẏ = αy ,
and thus dominated by exponentials

notes
Examples
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• likely best to watch the video of the lecture here, that there is going to be some examples of
how different eigenvalues and eigenspaces will imply different phase portraits

notes
How do we compute eigenvalues and eigenvectors numerically?

eigenvalues, eigenvectors = numpy.linalg.eig(A)

Modelling in Continuous Time - Connections between eigendecompositions and free evolution in continuous time LTI state space systems 9



• computationally speaking, all these things have been implemented in very robust and user
friendly libraries

notes
Summarizing

Analyse the structure of the free evolution of the state vari-
ables by means of the eigendecomposition of the system matrix

• find the eigenspaces and the eigenvalues
• depending on the values of the eigenvalues, understand how the trajectories along

the eigenspaces look like
• depending on the relative angle among the eigenspaces, infer the phase portrait
• if the system matrix is not diagonalizable, then this concept complicates due to

the presence of generalized eigenspaces (not in this module)
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• you should now be able to do this, following the pseudo-algorithm in the itemized list

notes

Most important python code for this sub-module

Modelling in Continuous Time - Connections between eigendecompositions and free evolution in continuous time LTI state space systems 1



•

notes
Linear algebra in general

https://numpy.org/doc/2.1/reference/routines.linalg.html
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• this library can be used to do much more than eigendecompositions

notes

Self-assessment material

Modelling in Continuous Time - Connections between eigendecompositions and free evolution in continuous time LTI state space systems 1
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•

notes
Question 82

What does a positive eigenvalue imply about the system’s behavior along its
corresponding eigenspace?

Potential answers:

I: (correct) The state grows exponentially along that eigenspace.
II: (wrong) The state decays exponentially along that eigenspace.

III: (wrong) The state oscillates along that eigenspace.
IV: (wrong) The state remains constant along that eigenspace.
V: (wrong) I do not know.

Solution 1:

A positive eigenvalue implies that the state grows exponentially along the corre-
sponding eigenspace. This is derived from the solution x(t) = eλtx0, where λ > 0
leads to exponential growth.

Modelling in Continuous Time - Connections between eigendecompositions and free evolution in continuous time LTI state space systems 2

• see the associated solution(s), if compiled with that ones :)

notes
Question 83

In the context of free evolution of a linear time-invariant (LTI) system, what does the
equation ẋ = Ax represent?

Potential answers:

I: (wrong) The evolution of the system’s output over time.
II: (correct) The evolution of the state variables over time, influenced by

the system matrix A.
III: (wrong) The relationship between input and output signals in the system.
IV: (wrong) The response of the system to external inputs.
V: (wrong) I do not know

Solution 1:

The equation ẋ = Ax describes the free evolution of the system’s state variables
over time, where the rate of change of the state vector x is determined by the
system matrix A.
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• see the associated solution(s), if compiled with that ones :)

notes
Question 84

Why is it useful to consider the eigendecomposition of the system matrix A in
analyzing the free evolution of state variables?

Potential answers:

I: (wrong) It simplifies calculating the system’s forced response.
II: (wrong) It directly determines the output y of the system.

III: (correct) It helps identify invariant directions (eigenvectors) and
growth/decay rates (eigenvalues) that govern the system’s behavior over
time.

IV: (wrong) It only affects the graphical representation, not the actual system
behavior.

V: (wrong) I do not know

Solution 1:

Eigendecomposition reveals the system’s eigenvectors and eigenvalues, which rep-
resent invariant directions and the associated rates of exponential growth or decay.
This insight simplifies the analysis of the system’s dynamics.
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• see the associated solution(s), if compiled with that ones :)

notes
Question 85

In a graphical representation, what does the matrix-vector product Ax illustrate in the
context of system dynamics?

Potential answers:

I: (wrong) The projection of the state vector onto the output space.
II: (wrong) The response of the system to a unit impulse.

III: (correct) Where the trajectory of the system is going, starting from x.
IV: (wrong) The change in the input signal over time.
V: (wrong) I do not know

Solution 1:

The product Ax represents ẋ, that indicates the system’s dynamics on the state
evolution.Modelling in Continuous Time - Connections between eigendecompositions and free evolution in continuous time LTI state space systems 5



• see the associated solution(s), if compiled with that ones :)

notes
Question 86

Which eigenvalues and eigenspaces would you say characterize the system matrix A,
looking just at this phase portrait?

−4 −3 −2 −1 0 1 2 3 4−4
−3
−2
−1

0
1
2
3
4

x1

x 2

0

5

10

15

∥ẋ∥

Solution 1:

The eigenspaces are associated to that subspaces identified by a series of aligned
quivers. The eigenvalues are positive or negative depending on the movement. If
there are complex eigenvalues then there are spiral like movements.
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• see the associated solution(s), if compiled with that ones :)

notes
Question 87

Which eigenvalues and eigenspaces would you say characterize the system matrix A,
looking just at this phase portrait?

−4 −3 −2 −1 0 1 2 3 4−4
−3
−2
−1

0
1
2
3
4

x1
x 2

0

5

10

15

20

∥ẋ∥

Solution 1:

The eigenspaces are associated to that subspaces identified by a series of aligned
quivers. The eigenvalues are positive or negative depending on the movement. If
there are complex eigenvalues then there are spiral like movements.
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• see the associated solution(s), if compiled with that ones :)

notes
Question 88

Which eigenvalues and eigenspaces would you say characterize the system matrix A,
looking just at this phase portrait?

−4 −3 −2 −1 0 1 2 3 4−4
−3
−2
−1

0
1
2
3
4

x1

x 2

0

5

10

15

∥ẋ∥

Solution 1:

The eigenspaces are associated to that subspaces identified by a series of aligned
quivers. The eigenvalues are positive or negative depending on the movement. If
there are complex eigenvalues then there are spiral like movements.
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• see the associated solution(s), if compiled with that ones :)

notes
Question 89

Which eigenvalues and eigenspaces would you say characterize the system matrix A,
looking just at this phase portrait?

−4 −3 −2 −1 0 1 2 3 4−4
−3
−2
−1

0
1
2
3
4

x1
x 2

0

5

10

∥ẋ∥

Solution 1:

The eigenspaces are associated to that subspaces identified by a series of aligned
quivers. The eigenvalues are positive or negative depending on the movement. If
there are complex eigenvalues then there are spiral like movements.
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• see the associated solution(s), if compiled with that ones :)

notes
Recap of sub-module
“Connections between eigendecompositions and free evolution in continuous time LTI state space systems”

• the eigenvalues of the system matrix A give the growth / decay rates of the
modes eαt of the free evolution of the system

• along eigenspaces, the trajectory of the free evolution is “simple”, i.e., aligned
with that eigenspace

• the kernel of the system matrix gives us the equilibria corresponding to u = 0

Modelling in Continuous Time - Connections between eigendecompositions and free evolution in continuous time LTI state space systems 10

• the most important remarks from this sub-module are these ones

notes

Metacognition Activities
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•

notes

In-Class Metacognition Activities

Modelling in Continuous Time - Metacognition Activities 1

•

notes
Concept Mapping Challenge

• Activity: Draft individual concept maps connecting key course concepts (e.g.,
ODE classifications, phase portraits). Compare and refine in small groups.

• Focus: Reflect on conceptual structures and interrelations.
• Debrief: Share one insight on evolving understanding.

Modelling in Continuous Time - Metacognition Activities 2



• TODO

notes
Error Analysis Workshop

• Activity: Analyze common mistakes related to ODEs or phase portraits. Identify
causes and prevention strategies.

• Focus: Reflect on common problem-solving errors.
• Debrief: Discuss validation strategies.

Modelling in Continuous Time - Metacognition Activities 3

• TODO

notes
Think-Aloud Pair Problem Solving

• Activity: Solve a problem aloud while a partner asks reflective questions. Swap
roles afterward.

• Focus: Encourage awareness of reasoning strategies.
• Debrief: Discuss insights on different approaches.
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• TODO

notes

At-home Self-paced Metacognition Activities

Modelling in Continuous Time - Metacognition Activities 1

•

notes
Reflection Journal

• Task: Write reflections after problem-solving sessions, addressing: intuitive
concepts, challenges, strategies used, and misconceptions.

• Focus: Promote awareness of learning strategies.
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• TODO

notes
Self-Explanation Videos

• Task: Record a short video explaining a concept (e.g., linearization validity).
Reflect on uncertain parts.

• Focus: Reinforce understanding by articulation.

Modelling in Continuous Time - Metacognition Activities 3

• TODO

notes
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