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• welcome to the course!
• on this side of this document you will find notes that accompany the text typically visualized

in class
• these notes are meant to convey the messages that are not displayed in the text on the side,

and basically constitute what the teacher intends to say in class

notes

Table of Contents I
state space representations

examples
Most important python code for this sub-module
Self-assessment material
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• this is the table of contents of this document; each section corresponds to a specific part of
the course

notes



state space representations

- state space representations 1

•

notes

Contents map

developed content units taxonomy levels
state of a system u1, e1
separation principle u1, e1

prerequisite content units taxonomy levels
ODE u1, e1

- state space representations 2

•

notes



Main ILO of sub-module “state space representations”

Define the meaning of “state space representation” in
the context of linear and non-linear dynamical systems
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• by the end of this module you shall be able to do this

notes

Discussion: which information do you need to forecast accurately how long
you may use your cellphone before its battery hits 0%?
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• think at which factors are important for you

notes



Summarizing
these pieces of information contain all I need to forecast the future evolution of the
battery level:

• current level of charge of the battery
• how much I will use the phone in the future
• how healthy the battery of my phone is
• which environmental factors may induce additional effects (too warm, too cold)
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• the state condenses somehow the past
• from a control point of view this is important, because the state somehow works as a “mem-

ory”: to decide wich u is best right now, I just need to check what is the current state – I do
not care about what state the system was experiencing before

• so this is a concept that is very instrumental for control

notes

A simple model of the battery charge as a dynamical system

Time Remaining = Discharge Rate
Remaining Capacity

example: 500mA
2000mAh

= 4hours

rewriting as an ODE:
• y(t) = Q(t) = remaining battery capacity at time t (mAh)
• u(t) = I(t) = current discharge rate at time t (mA)

Ô⇒ ẏ = −u
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• let’s make a physical model of this

notes



What is a state?

{ ẋ = −u
y = x

“the current value of the state x(t) contains all the information necessary to forecast
the future evolution of the output y(t) and of the state x(t), assuming to know the
future u(t). I.e., to compute the future values y(t + τ) and x(t + τ) it is enough to
know the current x(t) and the current and future inputs u(t ∶ t + τ)”
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• the state condenses somehow the past
• from a control point of view this is important, because the state somehow works as a “mem-

ory”: to decide wich u is best right now, I just need to check what is the current state – I do
not care about what state the system was experiencing before

• so this is a concept that is very instrumental for control

notes

Question 1

In a spring-mass system, which of the following is a valid state variable?

Potential answers:

I: (wrong) The temperature of the spring.
II: (correct) The displacement of the mass from its equilibrium position.

III: (wrong) The color of the mass.
IV: (wrong) The external force applied to the system.
V: (wrong) I do not know.

Solution 1:

The displacement of the mass from its equilibrium position is a valid state variable
because it describes the system’s configuration and is essential for predicting its
future behavior. Temperature and color are irrelevant, and the external force is
an input, not a state.
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• see the associated solution(s), if compiled with that ones :)

notes



Question 2

Which of the following pairs of variables can fully describe the state of a spring-mass
system?

Potential answers:

I: (wrong) The mass of the spring and the stiffness of the mass.
II: (wrong) The external force and the displacement of the mass.

III: (correct) The displacement of the mass and the velocity of the mass.
IV: (wrong) The acceleration of the mass and the color of the spring.
V: (wrong) I do not know.

Solution 1:

The displacement of the mass and the velocity of the mass fully describe the state
of a spring-mass system because they capture the system’s current configuration
(displacement) and its rate of change (velocity). Mass, stiffness, external force,
and color are not state variables.
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• see the associated solution(s), if compiled with that ones :)

notes

What do we mean with “modelling a state-space dynamical system”?
Defining

{ ẋ = f (x, u, d , θ)
y = g (x, u, d , θ)

and
• the variables

• u = the inputs
• d = the disturbances
• x = the states vector
• y = the measured outputs

• the structure of the functions f and g
• the value of the parameters θ
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• these are called state space representations
• take home message: the input-output maps saw in other modules are not the unique ways of

representing systems

notes



State space model - definition
Ingredients:

• the number of inputs, outputs and state variables must be finite
• the differential equations must be first order
• the separation principle (the current value of the state contains all the information

necessary to forecast the future evolution of the outputs and of the state) shall be
satisfied

state space model = finite set of first-order differential equations that connect a finite
set of inputs, outputs and state variables so that they satisfy the separation principle
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• so, if we recall what we did in some modules ago, this was the formal definition of a state
space system

• remember that, first of all, it is a finite representation: for example a metal bar that is heating
up, we may describe it with partial differential equations. But this would mean considering
the temperature in every point, and this means an infinite number of points - no good

• we work with computers, and somehow we need always to consider a discrete and finite
number of objects. Thus we consider finite number of states

notes

State space representations - Notation
• u1, . . . , um = inputs
• x1, . . . , xn = states
• y1, . . . , yp = outputs
• d1, . . . , dq = disturbances
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• remember also that this is the standard notation (but the q in dq, for which there is no
standard notation)

• if you will use something different in your job you will look like a fool

notes



State space representations - Notation

ẋ = f (x, u)
y = g (x, u)

• f = state transition map
• g = output map
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• finally, we use this notation

notes

examples
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•

notes



RC-circuit

vR iR

vCV

v̇C = −
1

RC
vC +

1
RC

V (1)

or, using control-oriented names,

ẋ = − 1
RC

x + 1
RC

u y = x (2)
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• we start with the simplest dynamic system possible, that is a scalar first order system where
the dynamics are implied by the presence of the capacitor

• note that if we were not having the capacitor the system would have been a static one
• here we can change the names so to highlight what is the output and the input, i.e., what

we can steer
• here note that how much y grows depends on both y and u, and this dependence is “fixed”

by R and C
• qualitatively what happens if we put u = 0 but we have some initial tension?

notes

Generalization: exponential growth, scalar version

ẋ = αx + βu y = x (3)
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• the previous example can be generalized in this way
• we will see better later on that “exponentials” play a big role here, since if we neglect u

you see that we have that we must have that the derivative of y must be proportional to y
itself. Exponentials have this property (also sinusoids, but we know that sinusoids are complex
exponentials, because of Euler’s identities)

• we will see this better later on though
• here note that how much y grows depends on both y and u, and this dependence is “fixed”

by α and β

notes



Generalizing in an other way: RCL-circuits

e(t)

R

C

L

EOM: Kirchhoff laws Ô⇒ vL(t) = Ldi(t)
dt

vi(t) = Ri(t) vC(t) =
1
C ∫

t

0
i(τ)dτ

e(t) = vL(t) + vR(t) + vC(t) Ô⇒ e(t) = Ldi(t)
dt
+ Ri(t) + 1

C ∫
t

0
i(τ)dτ (4)

- state space representations 4

• what happens if we add an inductor?
• the equations of motion can be derived from Kirchhoff’s laws, that can be summarized in this

way
• and then we can state that the tension in the generator must equal to the sum of the tensions

along the various components

notes

Generalizing in an other way: RCL-circuits part two

e(t) = Ldi(t)
dt
+ Ri(t) + 1

C ∫
t

0
i(τ)dτ (5)

can be rewritten as

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

˙
(∫

t

0
i(τ)dτ) = i(t)

i̇(t) = 1
L

e(t) − R
L

i(t) − 1
LC ∫

t

0
i(τ)dτ

(6)

that can be rewritten as
⎧⎪⎪⎪⎨⎪⎪⎪⎩

ẋ1 = x2

ẋ2 = 1
L

u(t) − R
L

x2 −
1

LC
x1

y = x2 (7)
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• for the purposes of the course it is convenient to do this rewriting
• and then this second rewriting, where we express the variables as states
• somehow it may have been more convenient to write x instead of y , but this is a sort of

nuisance that will not matter at all when you understood the messages from this course

notes



Exponential growth, matricial version
Generalization of all linear systems, thus also of “RCL circuits”

{ ẋ = Ax +Bu
y = Cx
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• this example generalizes the one saw before. Better to recall the geometrical interpretation
of a matrix times a vector, that highlights each column of A to be a direction in the space
where ẋ lives, and every component of x being thus how much that direction of that column
should be followed

• the same interpretation of columns times scalars follows for the term Bu. Here each term of
u

• also for this type of ODE we will have that exponentials play a big role

notes

Spring-mass systems
E.g., position of a cart fastened with a spring to a wall and subject to friction

x

m
k

f
F

EOM:
• force from the spring: Fx(t) = −kx(t)
• friction: Ff (t) = −f ẋ(t)
• applied force: F(t)
• Newton’s second law: ∑F = mẍ(t)

mẍ(t) = Fx(t) + Ff (t) + F(t) ↦ mẍ(t) = −kx(t) − f ẋ(t) + F(t)

(rewritable again as ẋ = Ax +Bu)
- state space representations 7

• next example: a cart
• Newton’s laws of motion tell us the following
• and we can rewrite things again in this way
• note that this is thus another example of the linear system that we used to represent RCL

circuits

notes



Important message: these two systems are “the same”

x

m
k

f
F

e(t)

R

C

L

thus studying ẋ = Ax +Bu in means studying both systems simultaneously!
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• so we can conclude that essentially these two systems share the same structure, only with
different parameters

• so this means that studying the equations in general makes us “save time”, because we study
all these systems (and many more) in one shot

notes

Lotka-Volterra
• yprey ∶= prey
• ypred ∶= predator

{ ẏprey = αyprey − βypreyypred
ẏpred = −γypred + δypreyypred

./LotkaVolterraSimulator.ipynb
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• of course not all the systems are of the type ẏ = Ay +Bu. This one is for example nonlinear,
since there is a product among the y ’s that cannot be captured by the linear relation above

• this example was seen before. More information and history behind it in https://en.
wikipedia.org/wiki/Lotka%E2%80%93Volterra_equations

• go through the python notebook for more information

notes

./LotkaVolterraSimulator.ipynb
https://en.wikipedia.org/wiki/Lotka%E2%80%93Volterra_equations
https://en.wikipedia.org/wiki/Lotka%E2%80%93Volterra_equations


Van-der-Pol oscillator

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

ẋ1 = µ(x1 −
x3

1
3
− x2)

ẋ2 = x1
µ

(8)

./VanDerPolSimulator.ipynb
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• another interesting example is the oscillator here, that we will see in more details later on
• the nice property of this system is that it has an orbit that attracts all the remaining ones
• we will discuss this example a few times. If you are already now interested in reading about

it, check https://en.wikipedia.org/wiki/Van_der_Pol_oscillator
• go through the python notebook for more information

notes

Balancing robot

xw

yw
θw

xb

yb

θb

lw = radius of the wheel

lb = body-wheel’s center distance

mw = mass of the wheel

mb = mass of the body
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• another example is a model of a segway
• here we will use this notation

notes

./VanDerPolSimulator.ipynb
https://en.wikipedia.org/wiki/Van_der_Pol_oscillator


Balancing robot

(Ib +mb l2
b) θ̈b = +mb lbg sin (θb) −mb lb ẍw cos (θb) − Kt

Rm
vm + (KeKt

Rm
+ bf )( ẋw

lw
− θ̇b)

( Iw
lw
+ lw mb + lw mw) ẍw = −mb lb lw θ̈b cos (θb) +mb lb lw θ̇2

b sin (θb) + Kt

Rm
vm − (KeKt

Rm
+ bf )( ẋw

lw
− θ̇b)

(9)
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• the EOM can be found again with Newton’s laws
• this is a nonlinear system, since it contains some trigonometric transformations of the variables

notes

Insulin concentration
• x1 ∶= sugar concentration
• x2 ∶= insulin concentration
• u1 ∶= food intake
• u2 ∶= insulin intake
• c ∶= sugar concentration in fasting (person-specific)

{ ẋ2 = a21 (x1 − c) − a22x2 + b2u2 x1 ≥ c
ẋ2 = −a22x2 + b2u2 x1 < c

{ ẋ1 = −a11x1x2 − a12 (x1 − c) + b1u1 x1 ≥ c
ẋ1 = −a11x1x2 + b1u1 x1 < c
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• this is a switched system that represents in a very simplified way what happens to the body
when eating or taking artificial insuline

• depending on whether there is more or less sugar in the blood than what is the person specific
parameter c, then the body answers in different ways

• the main take home message for this model is that it tries to mimick biological phenomena
that are quite understood

• the model can then be used to design when / how much to eat and to inject insuline
• for more information towards biology see for example https://en.wikipedia.org/wiki/

Insulin, while for control-oriented explanations see for example “Model individualization for
artificial pancreas”, in Computer Methods and Programs in Biomedicine, Volume 171, April
2019, Pages 133-140, Messori et al.

notes

https://en.wikipedia.org/wiki/Insulin
https://en.wikipedia.org/wiki/Insulin


Summarizing

Define the meaning of “state space representation” in
the context of linear and non-linear dynamical systems

• recall the definition of state space model
• be sure to have interiorized the separation principle with some practical examples
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• you should now be able to do this, following the pseudo-algorithm in the itemized list

notes

Most important python code for this sub-module

- state space representations 1

•

notes



Important library
https://python-control.readthedocs.io/en/0.10.1/conventions.html#
state-space-systems
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• this is more or less a reference library

notes

Self-assessment material

- state space representations 1

•

notes

https://python-control.readthedocs.io/en/0.10.1/conventions.html#state-space-systems
https://python-control.readthedocs.io/en/0.10.1/conventions.html#state-space-systems


Question 3

What is the primary purpose of the separation principle in state space representations?

Potential answers:

I: (wrong) To ensure that the system has an infinite number of states.
II: (wrong) To eliminate the need for inputs in the system model.

III: (correct) To ensure that the current state contains all information needed
to predict future behavior.

IV: (wrong) To simplify the computation of system eigenvalues.
V: (wrong) I do not know.

Solution 1:

The separation principle ensures that the current state contains all the information
necessary to predict the future evolution of the system, given the future inputs.
This is a fundamental property of state space representations.
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• see the associated solution(s), if compiled with that ones :)

notes

Question 4

Which of the following is a valid state variable in a state space representation of a
dynamical system?

Potential answers:

I: (wrong) The external force applied to the system.
II: (correct) The displacement of a mass in a spring-mass system.

III: (wrong) The color of the system components.
IV: (wrong) The temperature of the environment.
V: (wrong) I do not know.

Solution 1:

The displacement of a mass in a spring-mass system is a valid state variable
because it describes the system’s configuration and is essential for predicting its
future behavior. External forces, color, and environmental temperature are not
state variables.
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• see the associated solution(s), if compiled with that ones :)

notes



Question 5

What does the state transition map f in a state space representation describe?

Potential answers:

I: (wrong) The relationship between inputs and outputs.
II: (correct) The evolution of the state variables over time.

III: (wrong) The effect of disturbances on the system.
IV: (wrong) The stability of the system.
V: (wrong) I do not know.

Solution 1:

The state transition map f describes how the state variables evolve over time
based on the current state and inputs. It is a key component of state space
representations. - state space representations 4

• see the associated solution(s), if compiled with that ones :)

notes

Question 6

What is the role of the output map g in a state space representation?

Potential answers:

I: (wrong) To define the system’s stability.
II: (wrong) To describe the evolution of the state variables.

III: (correct) To relate the state variables and inputs to the measured outputs.
IV: (wrong) To eliminate the need for disturbances in the model.
V: (wrong) I do not know.

Solution 1:

The output map g relates the state variables and inputs to the measured outputs.
It defines how the system’s internal state is reflected in the observable outputs.
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• see the associated solution(s), if compiled with that ones :)

notes



Question 7

Which of the following pairs of variables is sufficient to describe the state of a simple
pendulum system?

Potential answers:

I: (wrong) The mass of the pendulum and the length of the string.
II: (wrong) The external torque and the angular displacement.

III: (correct) The angular displacement and the angular velocity.
IV: (wrong) The color of the pendulum and the gravitational constant.
V: (wrong) I do not know.

Solution 1:

The angular displacement and the angular velocity are sufficient to describe the
state of a simple pendulum system because they capture the system’s current
configuration (displacement) and its rate of change (velocity). Mass, length,
external torque, and color are not state variables.
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• see the associated solution(s), if compiled with that ones :)

notes

Exercise: find which parts of these paragraphs are correct and which ones
are wrong

The RCL circuit can be modeled by a second-order linear differential equation where
the inductance, resistance, and capacitance determine the system’s resonance
frequency. Interestingly, in an underdamped RCL circuit, the system will always return
to equilibrium without oscillating, which reflects the energy dissipation in the resistor.

- state space representations 7

• the solution is:
• RCL Circuit Misconception: The statement "the system will always return to equilibrium

without oscillating" is incorrect. An underdamped RCL circuit does oscillate before eventually
returning to equilibrium due to the resistance.

notes



Exercise: find which parts of these paragraphs are correct and which ones
are wrong

The Lotka-Volterra model is a non-linear system that describes interactions between
two species: one as a predator and the other as prey. The model assumes that the
growth rate of the prey population is proportional to the current population size, which
would mean that the population would grow indefinitely in the absence of predators.
Similarly, the predator population is dependent solely on the availability of prey,
implying that predators could not survive without prey even if there were other food
sources available.
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• the solution is:
• Lotka-Volterra Misconception: The claim that "predators could not survive without prey even

if there were other food sources available" oversimplifies the model. The model assumes that
the prey is the only food source, but in reality, predators might have alternative food sources.

notes

Exercise: find which parts of these paragraphs are correct and which ones
are wrong

The Van der Pol oscillator is an example of a non-linear system that exhibits limit cycle
behavior. This behavior is critical as it shows how the system can maintain a stable
oscillation regardless of initial conditions, which is a feature not present in linear
oscillators. It’s important to note that the Van der Pol oscillator can only have a single
limit cycle, and any perturbations will lead to a quick return to this cycle, indicating
that the system is highly stable.

- state space representations 9

• the solution is:
• Van der Pol Oscillator Misconception: The statement "the Van der Pol oscillator can only

have a single limit cycle" is correct, but saying that "any perturbations will lead to a quick
return to this cycle, indicating that the system is highly stable" is misleading. The Van der
Pol oscillator returns to its limit cycle, but the speed and nature of this return depend on
the systems parameters, and calling it "highly stable" is misleading and pushes persons into
thinking it’s more stable than it actually is.

notes



Recap of sub-module “state space representations”
• a set of variables is a state vector if it satisfies for that model the separation

principle, i.e., the current state vector “decouples” the past with the future
• state space models are finite, and first order vectorial models
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• the most important remarks from this sub-module are these ones

notes
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