Systems Laboratory, Spring 2025

Damiano Varagnolo – CC-BY-4.0

- welcome to the course!
- on this side of this document you will find notes that accompany the text typically visualized in class
- these notes are meant to convey the messages that are not displayed in the text on the side, and basically constitute what the teacher intends to say in class

- 1

Table of Contents I

• 1D convolution in continuous time

- Most important python code for this sub-module
- Self-assessment material

1D convolution in continuous time

- 1D convolution in continuous time 1

- 1D convolution in continuous time 2

Contents map

developed content units	taxonomy levels u1, e1	
convolution		
proroquisite content units	tavanamu lavala	
prerequisite content units	Laxonomy levels	
signal	ul el	

•

notes

notes

Why convolution?

because for a LTI system with impulse response h(t)it follows that $y_{\text{forced}}(t) = u * h(t)$

extremely important result for LTI systems:

$$y_{\text{forced}}(t) = h * u(t) = u * h(t) :=$$

$$:= \int_{-\infty}^{+\infty} u(\tau)h(t-\tau)d\tau = \int_{-\infty}^{+\infty} h(\tau)u(t-\tau)d\tau$$

 \ldots and this module = what that formula actually means from graphical perspectives

- 1D convolution in continuous time 5

Additional material

Videos:

- https://www.youtube.com/watch?v=KuXjwB4LzSA
- https://www.youtube.com/watch?v=acAw5WGtzuk
- https://www.youtube.com/watch?v=IaSGqQa50-M (for connections with probability)
- https://www.youtube.com/playlist?list= PL4iThgVpN7hmbIhHnCa7SDO0gLMoNwED_
- https://www.youtube.com/playlist?list= PL4mJLdGEHNvhCuPXsKFrnD7AaQB1MEB6a

Animations:

- https://lpsa.swarthmore.edu/Convolution/CI.html
- https://phiresky.github.io/convolution-demo/

notes

- 1D convolution in continuous time $\boldsymbol{6}$

Towards decomposing this formula in pieces

$$y_{\text{forced}}(t) = h * u(t) = \int_{-\infty}^{+\infty} u(\tau)h(t-\tau)d\tau = \int_{-\infty}^{+\infty} h(\tau)u(t-\tau)d\tau$$

better focus on

 $\int_{-\infty}^{+\infty} u(\tau) h(t-\tau) d\tau$

or on

$$\int_{-\infty}^{+\infty} h(\tau) u(t-\tau) d\tau ?$$

in automatic control typically better the second

- 1D convolution in continuous time 7

Towards decomposing this formula in pieces, small change of notation

$$y_{\text{forced}}(t) = \int_{-\infty}^{+\infty} h(\tau) u(t-\tau) d\tau \quad \mapsto \quad y_{\text{forced}}(\text{now}) = \int_{-\infty}^{+\infty} h(\tau) u(\text{now}-\tau) d\tau$$

Decomposing this formula in pieces

$$y_{\text{forced}}(\text{now}) = \int_{-\infty}^{+\infty} h(\tau) u(\text{now} - \tau) d\tau$$

- \implies constituent pieces =
- $u(now \tau)$
- h(τ)
- $u(now \tau)h(\tau)$
- $\int u(\operatorname{now} \tau)h(\tau)d\tau$

- 1D convolution in continuous time $\boldsymbol{9}$

- 1D convolution in continuous time 12

Another Example:

$$u(t) = \begin{cases} 1 & \text{for } t \in [1,2] \text{ and } t \in [2,3] \\ 0 & \text{otherwise} \end{cases} \qquad h(t) = \begin{cases} 2 & \text{for } t \in [0,2) \\ 0 & \text{otherwise} \end{cases}$$
?

_ notes

Paramount message

h in $y_{\text{forced}}(t) = \int_{-\infty}^{+\infty} h(\tau)u(t-\tau)d\tau$ represents how much the past *u*'s contribute to the current y_{forced} :

h * u(t)

- 1D convolution in continuous time 13

Refreshing what we are doing and why

Dynamics of a cart: $\dot{v}(t) = -\frac{k}{m}v(t) + \frac{k}{m}F(t)$ with:

- **control input:** u(t) (actuation from the motor, in this case = F(t))
- system output: y(t) (cart velocity, in this case = v(t))
- impulse response: h(t) (output corresponding to the input $\delta(t)$ assuming y(0) = 0)
- free evolution: y_{free}(t) (output in time corresponding to no input, i.e., u(t) = 0, and initial condition y(0) whatever it is)
- forced response: y_{forced}(t) = u * h(t) (output in time corresponding to null initial condition, i.e., y(0) = 0, and input u(t) whatever it is)
- total response: $y(t) = y_{\text{free}}(t) + y_{\text{forced}}(t)$

- 1D convolution in continuous time 14

notes

Quiz time!

$$h * u(t) \coloneqq \int_{-\infty}^{+\infty} h(\tau) u(t-\tau) d\tau$$

- is h * u(t) = u * h(t)?
- is $(\alpha h_1 + \beta h_2) * u(t) = \alpha (h_1 * u(t)) + \beta (h_2 * u(t))?$
- if both $h(\tau) = 0$ and u(t) = 0 if t < 0, how can we simplify $y(t) = \int_{-\infty}^{+\infty} h(\tau)u(t-\tau)d\tau$?

- 1D convolution in continuous time 15

Summarizing

Compute the convolution between two single dimensional continuous time signals

- take one of the two signals
- translate it to the "current t"
- flip it
- multiply the two signals in a pointwise fashion
- compute the integral of the result

- 1D convolution in continuous time 16

notes

- 1D convolution in continuous time 1

Methods implementing (discrete) convolutions

https://numpy.org/doc/2.1/reference/generated/numpy.convolve.html

Most important python code for this sub-module

https://docs.scipy.org/doc/scipy/reference/generated/scipy. signal.convolve.html

- 1D convolution in continuous time 2

Self-assessment material

- 1D convolution in continuous time 1

Question 1

What does the convolution integral $y_{\text{forced}}(t) = \int_{-\infty}^{+\infty} h(\tau)u(t-\tau)d\tau$ represent in the context of LTI systems?

Potential answers:

l: (wrong)	The free evolution of the system output.
ll: (correct)	The forced response of the system output due to the input
u(t).	
III: (wrong)	The total response of the system, including initial conditions.
IV: (wrong)	The impulse response of the system.
V: (wrong)	I do not know.

Solution 1:

The convolution integral $y_{\text{forced}}(t) = \int_{-\infty}^{+\infty} h(\tau)u(t-\tau)d\tau$ represents the forced response of the system output due to the input u(t). It describes how the system responds to the input when initial conditions are zero.

Question 2

Which of the following is true about the convolution operation h * u(t)?

nswers:

: :	(<u>wrong</u>) (wrong)	It is only defined for periodic signals. It is only applicable to discrete-time systems.
III:	(<u>correct</u>)	It is commutative, i.e., $h * u(t) = u * h(t)$.
IV:	(wrong)	It requires both signals to be symmetric.
V:	(wrong)	l do not know.

Solution 1:

The convolution operation is commutative, meaning h * u(t) = u * h(t). This property holds for continuous-time signals in LTI systems.

- 1D convolution in continuous time 3

Question 3

What does the impulse response h(t) of an LTI system represent?

Potential answers:

I:	(wrong)	The input signal $u(t)$ applied to the system.
II:	(wrong)	The free evolution of the system output.
III:	(wrong)	The total response of the system, including initial conditions.
IV:	(correct)	The output of the system when the input is a Dirac delta
	function $\delta(t)$	·).
V:	(wrong)	l do not know.

Solution 1:

The impulse response h(t) represents the output of the system when the input is a Dirac delta function $\delta(t)$. It characterizes the system's behavior_{1D} convolution in continuous time 4

Question 4

If $h(\tau) = 0$ for $\tau < 0$ and u(t) = 0 for t < 0, how can the convolution integral $y(t) = \int_{-\infty}^{+\infty} h(\tau)u(t-\tau)d\tau$ be simplified?

Potential answers:

I: (correct) $y(t) = \int_{0}^{t} h(\tau)u(t-\tau)d\tau$ II: (wrong) $y(t) = \int_{0}^{+\infty} h(\tau)u(t-\tau)d\tau$ III: (wrong) $y(t) = \int_{-\infty}^{+\infty} h(\tau)u(\tau)d\tau$ IV: (wrong) $y(t) = \int_{-\infty}^{0} h(\tau)u(t-\tau)d\tau$ V: (wrong) I do not know.

Solution 1:

- 1D convolution in continuous time 5

If $h(\tau) = 0$ for $\tau < 0$ and u(t) = 0 for t < 0, the convolution integral simplifies to $y(t) = \int_0^t h(\tau)u(t-\tau)d\tau$, as the integrand is zero outside this interval.

Question 5

What is the graphical interpretation of $h(\tau)$ in the convolution integral $y_{\text{forced}}(t) = \int_{-\infty}^{+\infty} h(\tau)u(t-\tau)d\tau$?

Potential answers:

I: (wrong)	It represents the future inputs of the system.
II: (correct)	It represents how much past inputs contribute to the current
output.	
III: (wrong)	It represents the free evolution of the system.
IV: (wrong)	It represents the total energy of the system.
V: (wrong)	l do not know.

Solution 1:

The term $h(\tau)$ in the convolution integral represents how much past inputs $u(t - \tau)$ contribute to the current output y(t). This is a key interpretation in LTI systems.

Recap of sub-module "1D convolution in continuous time"

- convolution is an essential operator, since it can be used for LTI systems to compute forced responses
- its graphical interpretation aids interpreting impulse responses as how the past inputs contribute to current outputs

notes	_
 the most important remarks from this sub-module are these ones 	
	J

- 1D convolution in continuous time 7