Systems Laboratory, Spring 2025

Damiano Varagnolo – CC-BY-4.0

- welcome to the course!
- on this side of this document you will find notes that accompany the text typically visualized in class
- these notes are meant to convey the messages that are not displayed in the text on the side, and basically constitute what the teacher intends to say in class

- 1

Table of Contents I

- Most important python code for this sub-module
- Self-assessment material

notes

Contents map

developed content units	taxonomy levels
Dirac delta	u1, e1
impulse response	u1, e1

prerequisite content units	taxonomy levels
superposition principle	u1, e1
LTI ODE	u1, e1

Main ILO of sub-module "what is an impulse response"

Describe what the impulse response of an LTI system is in practice

- what is an impulse response 3

Impulse response \leftrightarrow superposition principle \leftrightarrow LTI system

talking about the impulse response of a nonlinear system is such a big mistake that may make you fail the exam on the spot

Practical example: spring-mass system

- output = position
- input = force (in Newtons)

- what is an impulse response 5

What if I push the cart with a force of 0.5 Newtons?

What if I push the cart with a force of 2 Newtons?

What if I push the cart with a force of 1 Newton for 1 second?

What if I push the cart with a force of 3 Newtons for 1/3 of a second?

4 Newtons for 1/4 of a second?

100 Newtons for 1/100 of a second?

1000 Newtons for 1/1000 of a second?

Where are we going with the input signal?

→ Dirac's delta, i.e., pushing an unitary mass within an infinitesimal space

ESSENTIAL POINT

this game has sense only because the system is assumed to be LTI

Discussion

Summarizing

Describe what the impulse response of an LTI system is in practice

- an opportune limit behavior of a transformation of the step response of a LTI system
- it is though a transformation that makes sense only if the system is LTI

notes
 you should now be able to do this, following the pseudo-algorithm in the itemized list

- what is an impulse response 21

Most important python code for this sub-module

<u>notes</u>

Important libraries / methods

- https://docs.scipy.org/doc/scipy/reference/generated/scipy. signal.impulse.html
- https://python-control.readthedocs.io/en/latest/generated/ control.impulse_response.html

Question 1

What is the impulse response of an LTI system?

Potential answers:

I: (wrong)	The output of the system when the input is a sinusoidal function.
II: (wrong)	The output of the system when the input is a ramp function.
III: (wrong)	The output of the system when the input is a step function.
IV: (correct)	The output of the system when the input is a Dirac delta
function.	
V: (wrong)	l do not know.

Solution 1:

The impulse response of an LTI system is the output of the system when the input is a Dirac delta function. This response characterizes the system's behavior_{pulse response 2} and can be used to predict its output for any arbitrary input.

Question 2

Why is the impulse response meaningful only for LTI systems?

Potential answers:

- I: (correct) Because the impulse response is a direct consequence of the superposition principle, which applies only to LTI systems.
- II: (wrong) Because nonlinear systems do not respond to impulses.
- III: (wrong) Because the impulse response is too complex to compute for nonlinear systems.
- IV: (wrong) Because nonlinear systems have infinite impulse responses.
- V: (wrong) I do not know.

Solution 1:

The impulse response is meaningful only for LTI systems because it relieshon the pulse response 3 superposition principle, which is a fundamental property of LTI systems. Nonlinear systems do not satisfy this principle, making the concept of an impulse response invalid for them.

notes

Question 3

What happens to the mass-spring-damper system when the input force is a Dirac delta function?

Potential answe	ers:	
l: (wrong)	The mass oscillates indefinitely without damping.	
ll: (<u>correct</u>)	The mass exhibits a transient response that decays over time	
due to damping.		
III: (wrong) to affect it.	The mass remains stationary because the impulse is too short	
IV: (wrong)	The mass moves with constant velocity.	
V: (wrong)	l do not know.	

Solution 1:

- what is an impulse response 4

When the input force is a Dirac delta function, the mass-spring-damper system exhibits a transient response that decays over time due to the damping effect. This response is the impulse response of the system.

Question 4

What is the integral of $f(\tau)\delta(\tau - 4)$ from $-\infty$ to $+\infty$?

Potential answ	vers:
I: (wrong) II: (wrong) III: (correct) IV: (wrong) V: (wrong)	$\int_{-\infty}^{+\infty} f(\tau) d\tau$ f(4) $\delta(4)$ I do not know.
Solution 1:	

The integral of $f(\tau)\delta(\tau - 4)$ from $-\infty$ to $+\infty$ is f(4). This is because the Dirac delta function "samples" the function $f(\tau)$ at $\tau = 4$.

notes
 see the associated solution(s), if compiled with that ones :)

see the associated solution(s), if compiled with that ones :)

notes

Recap of sub-module <u>"what is an impulse response"</u>

- impulse responses are directly connected to step responses
- actually this connection is valid only if the system is LTI

notes
the most important remarks from this sub-module are these ones