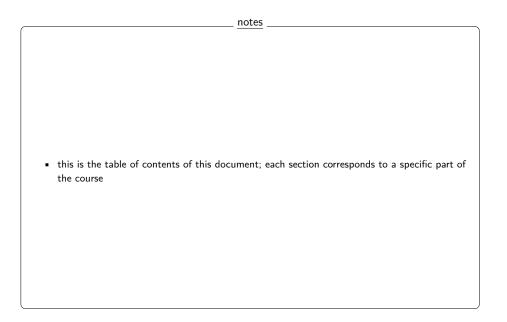
Systems Laboratory, Spring 2025


Damiano Varagnolo – CC-BY-4.0

- welcome to the course!
- on this side of this document you will find notes that accompany the text typically visualized in class
- these notes are meant to convey the messages that are not displayed in the text on the side, and basically constitute what the teacher intends to say in class

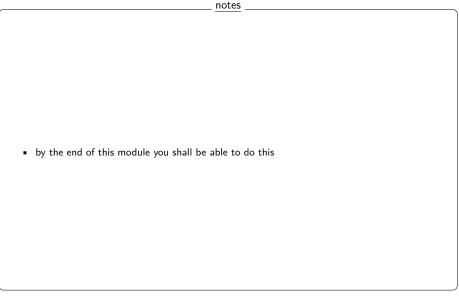
- 1

Table of Contents I

- Most important python code for this sub-module
- Self-assessment material

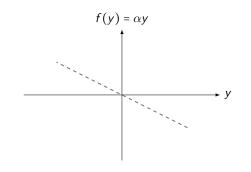
what is the superposition principle, and what does it imply

Contents map

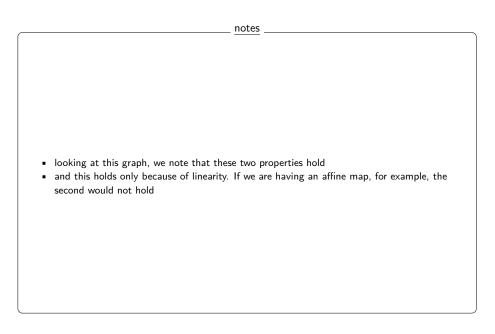

developed content units	taxonomy levels
superposition principle	u1, e1
· · · · · ·	
prerequisite content units	taxonomy levels
LTI ODE	u1. e1

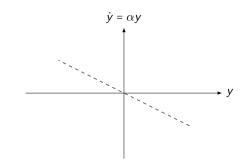
 _ notes

- what is the superposition principle, and what does it imply $\boldsymbol{1}$


Main ILO of sub-module "what is the superposition principle, and what does it imply"

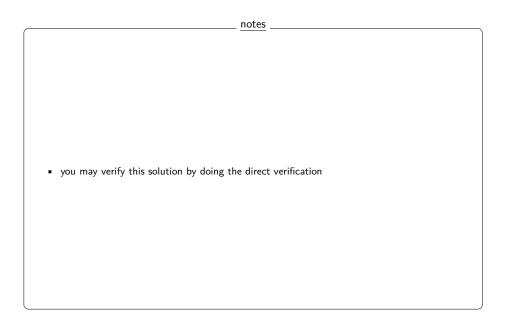
Describe the importance of the superposition principle to analyze LTI systems

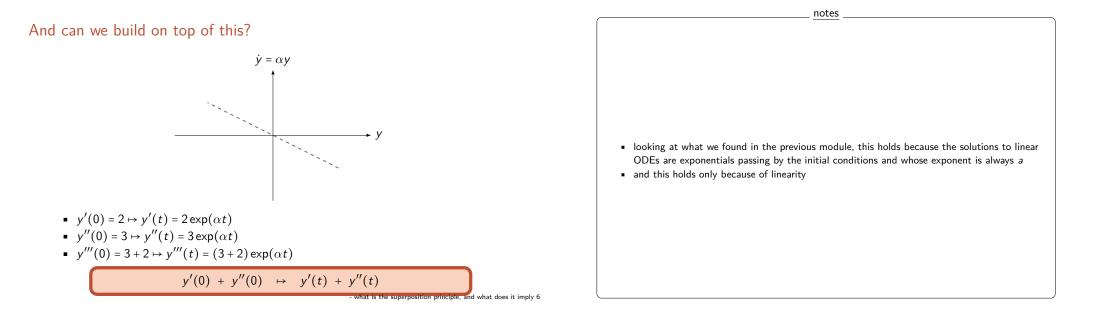

- what is the superposition principle, and what does it imply 3

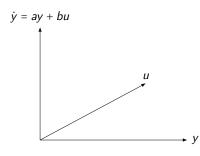


implications/definition of linearity:

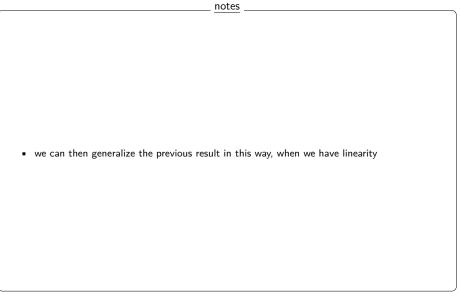
- f(x+y) = f(x) + f(y)
- $f(\alpha y) = \alpha f(y)$




What if we interpret this as an ODE?


 \implies an LTI system, for which

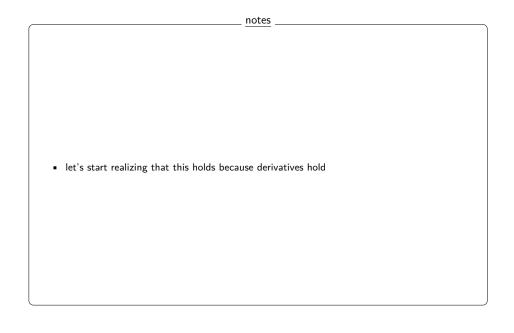
 $\dot{y} = \alpha y$ is solved by $y(t) = y(0) \exp(\alpha t) \quad \forall y(0), \alpha, t$



Further generalization

- $\{y'(0), u'\} \mapsto y'(t)$ $\{y''(0), u''\} \mapsto y''(t)$ $\{y'(0) + y''(0), u' + u''\} \mapsto y'(t) + y''(t)$

- what is the superposition principle, and what does it imply 7

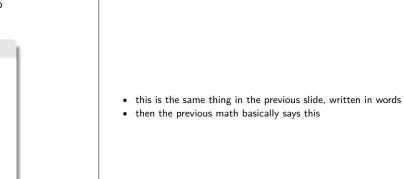

Aiding intuitions with math

Linearity implies that if $\{y', u', y'(0)\}$ and $\{y'', u'', y''(0)\}$ satisfy

$$\begin{cases} \frac{dy'(t)}{dt} = ay'(t) + bu'(t) \\ y'(0) = y'_{0} \\ \frac{dy''(t)}{dt} = ay''(t) + bu''(t) \\ y''(0) = y''_{0} \end{cases}$$
(1)

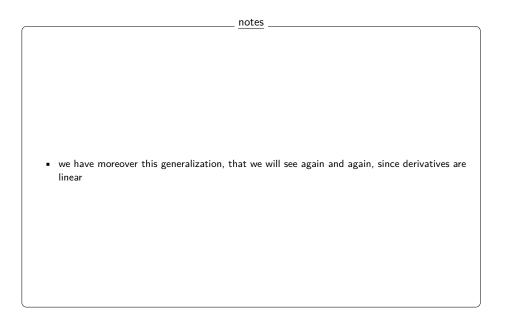
then their sum also satisfies

$$\begin{cases} \frac{d(\alpha'y'(t) + \alpha''y''(t))}{dt} = a(\alpha'y'(t) + \alpha''y''(t)) + b(\alpha'u'(t) + \alpha''u''(t)) \\ \alpha'y'(0) + \alpha''y''(0) = \alpha'y'_0 + \alpha''y''_0 \end{cases}$$
(2)


Rephrasing

Linearity implies that if $\{y', u', y'(0)\}$ and $\{y'', u'', y''(0)\}$ satisfy the ODE then also their sum $\{y' + y'', u' + u'', y'(0) + y''(0)\}$ satisfies the ODE.

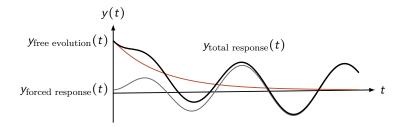
The superposition principle in words


in LTI systems combining inputs and initial conditions produces a total effect that is the linear combination of that effects one would get with the individual causes each acting separately

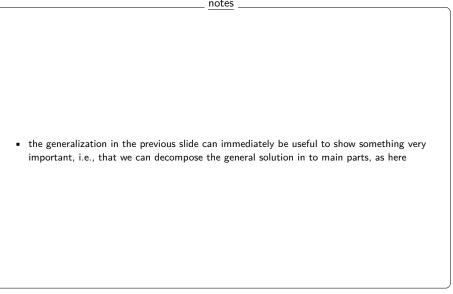
- what is the superposition principle, and what does it imply 9

Important: the superposition principle works with any LTI Will be repeated and stated again precisely later on

the proof holds for every system that generalizes $\dot{y} = ay + bu$, i.e., every "linear combination of dots of y = linear combination of dots of u"

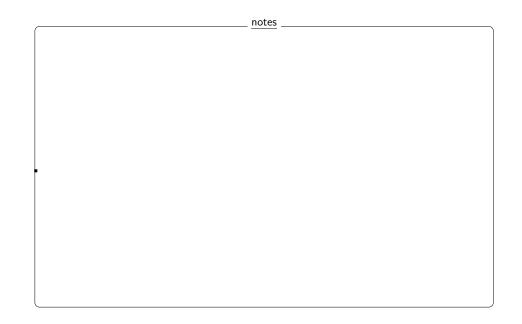


_ notes


Superposition principle \implies response of LTIs = free evolution + forced response

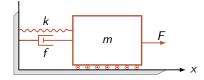
assume:

- $\{u(t) = 0(t), y(0) \neq 0\}$ causes $y_{\text{free evolution}}(t)$
- { $u(t) \neq 0(t)$, y(0) = 0} causes $y_{\text{forced response}}(t)$



A mnemonic scheme

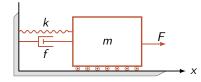
(only for LTI systems!!)


$$(u, y_0) = (0, y_0) + (u, 0)$$

total response = free evolution + forced response

notes

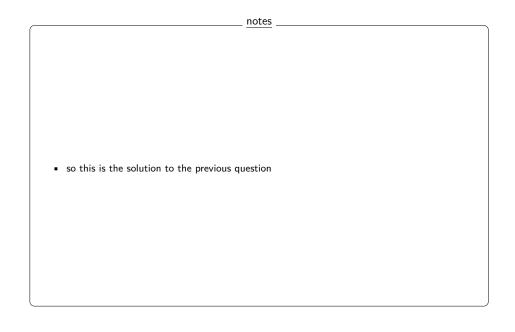
Continuing with some intuitions


Discussion: how will the cart move if I use $u(t) = \sin(\omega t)$ starting from a resting state? (only intuitively, assuming everything ideal) And what about if $u(t) = 2\sin(\omega t)$? And what about $u(t) = \sin(\omega' t) + \sin(\omega'' t)$? And what about $u(t) = \alpha' \sin(\omega' t) + \alpha'' \sin(\omega'' t)$?

- what is the superposition principle, and what does it imply 13

- we will see later on precisely; for now let's say that it moves somehow
- here intuition may not help: anyway it makes the same movement as before but with twice the amplitude
- here intuition may again not help: it makes the sum of the two movements
- here intuition may again not help: it makes the sum of the two movements scaled

Refining the intuitions


Assume to have measured

 $\mathbf{y}'(0), u'(t) \mapsto y'(t) \qquad \mathbf{y}''(0), u''(t) \mapsto y''(t)$

Saying "this system is linear" means assuming $\forall \alpha', \alpha'' \in \mathbb{R}$

$$\alpha' \mathbf{y}'(0) \alpha' \mathbf{y}''(0), u'(t) \mapsto y'(t) \qquad \mathbf{y}''(0), u''(t) \mapsto y''(t)$$

thus assuming that from a resting state the input $u(t) = \alpha \sin(\omega_{\alpha} t) + \beta \sin(\omega_{\beta} t)$ causes $y(t) = \alpha y_{\omega\alpha}(t) + \beta y_{\omega\beta}(t)$

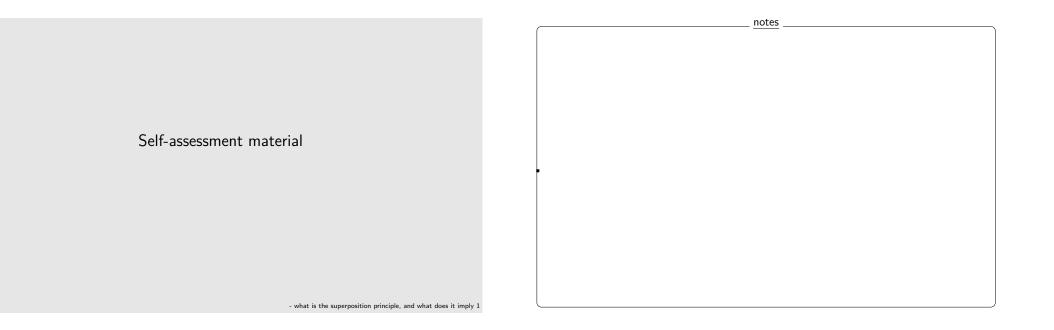

Summarizing

Describe the importance of the superposition principle to analyze LTI systems

• it makes us able to say "total = free + forced"

you should now be able to do this, following the pseudo-algorithm in the itemized list
),

- what is the superposition principle, and what does it imply $15\,$



notes

Suggestion

part of the SciPy library (scipy.signal) provides tools for working with LTI systems, including creating transfer functions, state-space representations, and analyzing system responses (stuff that will be seen in the next modules)

	notes
 check this library, you will use it 	

Question 1

What does the superposition principle imply for LTI systems?

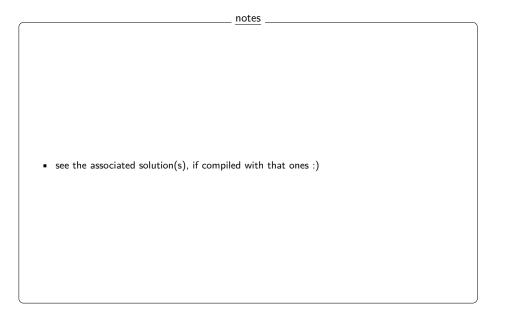
Potential answers:

I: (wrong)	The total response is the product of the free evolution and
forced resp	onse.
II: (correct)	The total response is the sum of the free evolution and forced
response.	
III: (wrong)	The total response is independent of the initial conditions.
IV: (wrong)	The total response is only determined by the input.
V: (wrong)	l do not know.

Solution 1:

The superposition principle implies that the total response of parameters of the forced response due to initial conditions) and the forced response due to the input). This is a fundamental property of linear systems.

Question 2


Which of the following is a necessary condition for the superposition principle to hold in a system?

Potential answers:

I: (wrong)	The system must be nonlinear.
II: (correct)	The system must be linear and time-invariant.
III: (wrong)	The system must have time-varying parameters.
IV: (wrong)	The system must be unstable.
V: (wrong)	l do not know.

Solution 1:

The superposition principle holds only for Linear Time-Invariant (LTI) systems. Nonlinear or time-varying systems do not satisfy the superposition in principle and what does it imply 3

see the associated solution(s), if compiled with that ones :)

Question 3

What is the free evolution of an LTI system?

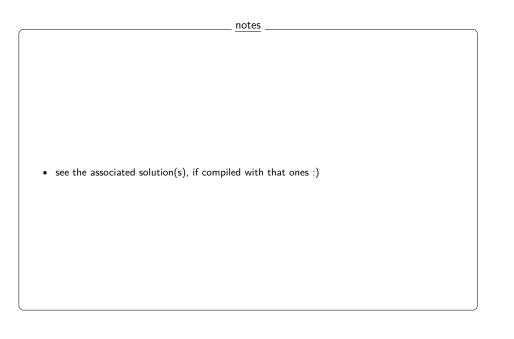
Potential answers: I: (wrong) The response of the system to a nonzero input with zero initial

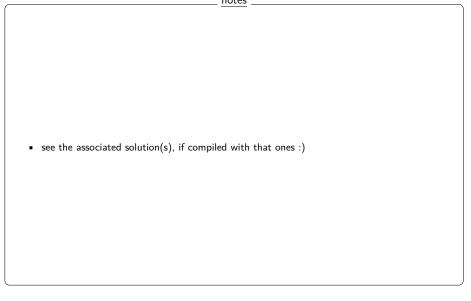
conditions.	The response of the system to a nonzero input with zero initial
II: (correct)	The response of the system to zero input with nonzero initial
conditions.	
III: (wrong)	The steady-state response of the system.
IV: (wrong)	The transient response of the system.
V: (wrong)	l do not know.

Solution 1:

The free evolution of an LTI system is the response of the isystem when it input does it imply 4 is zero, but the initial conditions are nonzero. It represents the system's natural behavior without external forcing.

Question 4


If an LTI system has an input $u(t) = \alpha' u'(t) + \alpha'' u''(t)$ and initial conditions $y(0) = \alpha' y'(0) + \alpha'' y''(0)$, what is the total response y(t)?

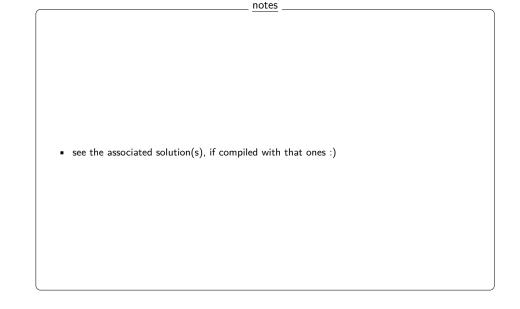

Potential answers:

I:	(wrong)	$y(t) = \alpha' y'(t) \cdot \alpha'' y''(t)$
II:	(correct)	$y(t) = \alpha' y'(t) + \alpha'' y''(t)$
III:	(wrong)	$y(t) = \alpha' y'(t) - \alpha'' y''(t)$
IV:	(wrong)	$y(t) = \alpha' y'(t) / \alpha'' y''(t)$
V:	(wrong)	l do not know.

Solution 1:

For an LTI system, the total response y(t) is the linear combination of the individual responses y'(t) and y''(t), scaled by α' and α'' is the respectively intermediate of the respectively of the respective of the respectiv a direct consequence of the superposition principle.

Question 5


What is the forced response of an LTI system?

Potential answers:

l: (correct)	The response of the system to a nonzero input with zero initial
conditions.	
ll: (wrong)	The response of the system to zero input with nonzero initial
conditions.	
III: (wrong)	The response of the system to a step input.
IV: (wrong)	The response of the system to a sinusoidal input.
V: (wrong)	l do not know.

Solution 1:

The forced response of an LTI system is the response hole the postermation of the does it imply 6 input is nonzero, but the initial conditions are zero. It represents the system's behavior due to external forcing.

Recap of sub-module

"what is the superposition principle, and what does it imply"

- superposition principle helps logically separating specific causes into specific effects
- linear ODEs \implies superposition principle
- superposition principle \implies "whole = free + forced"
- nonlinear systems WON'T satisfy this principle!

10000	
	`
 the most important remarks from this sub-module are these ones 	

notes