
Systems Laboratory, Spring 2025

Damiano Varagnolo – CC-BY-4.0

- 1

• welcome to the course!
• on this side of this document you will find notes that accompany the text typically visualized

in class
• these notes are meant to convey the messages that are not displayed in the text on the side,

and basically constitute what the teacher intends to say in class

notes

Table of Contents I
what is control

Most important python code for this sub-module
Self-assessment material

- 2

• this is the table of contents of this document; each section corresponds to a specific part of
the course

notes



what is control

- what is control 1

•

notes

Contents map

developed content units taxonomy levels
feedforward u1, e1
feedback u1, e1
model based control u1, e1
model free control u1, e1

prerequisite content units taxonomy levels
ODE u1, e1

- what is control 2

•

notes



Main ILO of sub-module “what is control”

Interpret automatic control as an oppor-
tune operation on the dynamics of a system

- what is control 3

• by the end of this module you shall be able to do this

notes

Example: speed control

main parameters:
• m mass of the car
• b friction coefficient
• g gravity coefficient

- what is control 4

• in this example we shall make the car keep a target speed independently of the inclination of
the road

notes



A sufficiently accurate model for the purpose

from Newton laws: mẍ = −bẋ + u −mg sin(d)

control objective: minimize ∣y(t) − r(t)∣ with r(t) = wished speed

- what is control 5

• and (trust me) this is a good enough model for the purpose of designing a control law

notes

Feedforward control: “I think I know which d(t) will happen, and I
compensate for that”

r controller plant

d

yu

u(t) = something that compensates that d̂(t)

- what is control 6

• assuming we have an estimate / forecast d̂(t), knowing the model we know how big we need
u to compensate that disturbance

notes



Open loop / feedforward control: “I think I know which d(t) will happen,
and I compensate for that”

u(t) = something that compensates that d̂(t)

problem: if d̂ − d is big, then we expect y − r to be big too, and we won’t be able to
note this!

- what is control 7

• of course pure feedforward / open loop control may be problematic, especially for the fact
that there won’t be ways to detect if there are big errors and react to them

notes

Note that open loop ≠ feedforward

Open loop:

r controller plant

d

yu

Feedforward:

r controller plant

d

yu

- what is control 8

• in summary, open-loop control works without feedback or adjustment based on the system’s
state, while feedforward control adjusts proactively based on expected disturbances or changes.
Both are reactive in the sense that they dont correct in real-time based on the output, but
feedforward aims to address known disturbances before they affect the system

• the differences will be more clear as we go on with the course

notes



Question 1

Open loop / feedforward control is so simple and naïve that no system in the world
uses it

Potential answers:

I: (wrong) true
II: (correct) false

III: (wrong) I do not know

Solution 1:

Absolutely false! Open-loop controllers are simple, cost-effective, and require
no feedback, making them easy to design and implement. They are fast since
they dont need to process sensor data, making them suitable for time-sensitive
applications. However, they are less accurate and cannot correct for disturbances
or system variations. Examples include a washing machine running a fixed cycle,
a microwave heating for a set time, a traffic light operating on a fixed schedule,
an irrigation system with a timer, and an electric kettle that shuts off based on
time rather than temperature.

- what is control 9

• see the associated solution(s), if compiled with that ones :)

notes

Feedback control: “I measure something, and depending on what I
measure I take a decision”

r controller plant

d

y

filter

+ e u
−

(= designing a controller, i.e., in this case
designing a function that maps the signal e into the signal u)

- what is control 10

• note that this is again the block scheme of feedback control, that is NOT the unique way of
doing control (there is also ’feedforward’, for example)

notes



Main dichotomy on how to build a feedback controller
• model free (e.g., PIDs)
• model based (e.g., MPCs)

- what is control 11

• actually there are more details here you will discover while studying control systems. For now
consider though just this dicothomy

notes

Crash-slide on PIDs

r(t) ∑ Ki ∫
t

−∞

e(τ)dτ

Kpe(t)

Kd ė(t)

∑ system y(t)+ e(t)
+

+
+−

implicit assumption: we can measure y(t)! (see also
https://www.youtube.com/watch?v=UR0hOmjaHp0!)

- what is control 12

• you will see this controller in big details in the next courses, for now let’s only get some
intuitions

• important thing: we need sensors and processing units, to be able to implement this. This
means that we need to allocate money for buying and installing this piece of hardware - may
be more expensive than open loop control

notes

https://www.youtube.com/watch?v=UR0hOmjaHp0


PID for the speed control task

u(t) = Kp error right now
+Ki sum of all past errors
+Kd current tendency of the error

e(t), u(t)

t

- what is control 13

• so from an intuitive perspective it is good to keep in mind that each component has a certain
meaning

• tuning PIDs is an art. A nice book on this is this: https://link.springer.com/book/10.
1007/1-84628-586-0

notes

Question 2

A PID is guaranteed to work well

Potential answers:

I: (wrong) yes, always
II: (wrong) no, never

III: (correct) no, it depends on how well tuned it is
IV: (wrong) I do not know

Solution 1:

A PID controller is not guaranteed to work well in all cases; its performance de-
pends on proper tuning. Poorly tuned PID controllers can lead to instability, slow
response, or excessive oscillations. The three gains (proportional (Kp), integral
(Ki), and derivative (Kd)) must be adjusted based on the system dynamics.
For example, if Kp is too high, the system may oscillate or become unstable. If
Ki is too high, the system may suffer from overshoot and integral windup. If Kd
is too high, the system may become too sensitive to noise.
Tuning methods like Ziegler-Nichols, Cohen-Coon, or optimization-based ap-
proaches help in achieving a well-performing PID controller. Therefore, the cor-
rect answer is: *no, it depends on how well tuned it is*.

- what is control 14

• see the associated solution(s), if compiled with that ones :)

notes

https://link.springer.com/book/10.1007/1-84628-586-0
https://link.springer.com/book/10.1007/1-84628-586-0


Crash-slide on MPCs

t

signals measured past y wished future y potential u, and corresponding forecasted y best u = “best” forecasted y execute u(now)measure, and repeat

now − 4 now − 3 now − 2 now − 1 now + 1 now + 2 now + 3 now + 4now

prediction horizon

- what is control 15

• see also https://www.youtube.com/watch?v=UR0hOmjaHp0!

notes

Question 3

A MPC is guaranteed to work well

Potential answers:

I: (wrong) yes, always
II: (wrong) no, never

III: (correct) no, it depends on how good the model is
IV: (wrong) I do not know

Solution 1:

Model Predictive Control (MPC) is not guaranteed to work well in all cases;
its performance depends on how accurately the model represents the real system.
Since MPC relies on predicting future system behavior using a model, inaccuracies
in the model can lead to poor performance or instability.
Key factors affecting MPC performance:

• Model Accuracy: If the model does not capture the system dynamics well,
predictions will be incorrect, leading to suboptimal control actions.

• Computation Time: MPC solves an optimization problem at every step. If
computations take too long, real-time implementation may fail.

• Disturbances & Uncertainty: If disturbances or modeling errors are not
properly handled (e.g., via robust or adaptive MPC), performance may de-
grade.

Tuning aspects such as the prediction horizon, control horizon, and cost function

weights also influence performance.
Thus, the correct answer is: no, it depends on how good the model is.

- what is control 16

• see the associated solution(s), if compiled with that ones :)

notes

https://www.youtube.com/watch?v=UR0hOmjaHp0


Question 4

Is MPC guaranteed to work better than PID?

Potential answers:

I: (wrong) yes, always
II: (wrong) no, never

III: (correct) no, it actually depends on the situation
IV: (wrong) I do not know

Solution 1:

MPC is not always guaranteed to work better than PID; its effectiveness depends
on the specific system and control objectives. While MPC offers advantages such
as constraint handling, predictive capabilities, and optimization-based control, it
also has drawbacks compared to PID.
Key factors influencing the choice between MPC and PID:

• System Complexity: PID works well for simple, well-modeled systems, while
MPC is better suited for multivariable or highly constrained systems.

• Computational Resources: PID is computationally inexpensive and easy to
implement, whereas MPC requires solving an optimization problem at each
step, making it more demanding.

• Tuning Effort: While PID requires gain tuning, MPC requires model iden-
tification and tuning of multiple parameters, which can be complex.

• Disturbances and Uncertainty: MPC can anticipate and compensate for

disturbances better in some cases, but if the model is inaccurate, it may
perform worse than a well-tuned PID.

Thus, the correct answer is: no, it actually depends on the situation.

- what is control 17

• see the associated solution(s), if compiled with that ones :)

notes

Question 5

Is closed loop control guaranteed to work better than open loop control?

Potential answers:

I: (wrong) yes, always
II: (wrong) no, never

III: (correct) no, it actually depends on the situation
IV: (wrong) I do not know

Solution 1:

Closed-loop control is not always guaranteed to work better than open-loop con-
trol; the effectiveness of each approach depends on the specific application and
system characteristics. While closed-loop control provides feedback and can cor-
rect errors, open-loop control can be sufficient or even preferable in certain sce-
narios.
Key factors influencing the choice between open-loop and closed-loop control:

• System Variability: Closed-loop control is beneficial when the system is
subject to disturbances or uncertainties, as it can adjust in real time. How-
ever, for predictable systems with no disturbances, open-loop control may
be simpler and more efficient.

• Complexity and Cost: Closed-loop systems require sensors, controllers,
and actuators, increasing cost and complexity, whereas open-loop systems
are often simpler and cheaper.

• Response Time: Open-loop control can be faster since it does not rely
on feedback processing, making it suitable for high-speed operations where
corrections are unnecessary.

• Energy and Stability Considerations: Some closed-loop systems may in-
troduce oscillations or instability if not properly designed, while open-loop
systems avoid this risk by operating in a predefined manner.

Thus, the correct answer is: no, it actually depends on the situation.

- what is control 18

• see the associated solution(s), if compiled with that ones :)

notes



But eventually, what is control?

an algorithm to compute u(t) starting from the available information

y

u
ẏ

- what is control 19

• and there are many different algorithms to do so. A goal that you may put to yourself in
these years is to arrive at knowing a sufficient number of them, and in details enough to have
a feeling of the pros and cons, so to choose the right approach depending on the needs

notes

A final note: in practice it is a good choice to combine both feedback and
feedforward actions

r controller plant

d

yu

- what is control 20

• this block scheme shows that there is both a feedback and a feedforward action

notes



Summarizing

Interpret automatic control as an oppor-
tune operation on the dynamics of a system

• think at what feedforward and feedback mean
• think at the fact that essentially they are ways of computing u, and that that u

enters the dynamics of the system

- what is control 21

• you should now be able to do this, following the pseudo-algorithm in the itemized list

notes

Most important python code for this sub-module

- what is control 1

•

notes



Note: going through everything here would take months - just be aware of
their existence and start playing with them

• https://python-control.readthedocs.io/en/0.10.1/
• https://pypi.org/project/simple-pid/
• https://www.do-mpc.com/en/latest/

- what is control 2

• these libraries all relate to what we saw in this module; watch out though that

notes

Self-assessment material

- what is control 1

•

notes

https://python-control.readthedocs.io/en/0.10.1/
https://pypi.org/project/simple-pid/
https://www.do-mpc.com/en/latest/


Question 6

PID control requires a model of the system to function correctly.

Potential answers:

I: (wrong) yes, always
II: (correct) no, it works without a model

III: (wrong) I do not know

Solution 1:

A PID controller works without requiring a model of the system. Instead, it uses
feedback from the systems output to adjust the control input. The three pa-
rametersproportional (Kp), integral (Ki), and derivative (Kd)are tuned based on
system behavior, but no explicit system model is necessary. This makes PID con-
trollers simple and widely applicable, even in systems where modeling is difficult
or not feasible.

- what is control 2

• see the associated solution(s), if compiled with that ones :)

notes

Question 7

Model Predictive Control (MPC) can only be applied when the model is perfect.

Potential answers:

I: (wrong) yes, the model must be perfect
II: (correct) no, it works with approximate models

III: (wrong) I do not know

Solution 1:

MPC does not require a perfect model, though its performance depends on how
accurately the model represents the system. If the model is approximate, the
controller may still work well, but the performance may degrade if the model is
too far from reality. In practice, methods like robust or adaptive MPC are used
to handle model inaccuracies and disturbances. - what is control 3

• see the associated solution(s), if compiled with that ones :)

notes



Question 8

Feedforward control is generally better than feedback control for handling disturbances.

Potential answers:

I: (wrong) yes, feedforward is always better
II: (correct) no, feedback control is better for disturbances

III: (wrong) I do not know

Solution 1:

Feedforward control can be effective when disturbances are predictable, as it
compensates for them proactively. However, feedback control is generally better
for handling unexpected disturbances or system changes because it can adjust
in real-time based on the system’s output. Feedback ensures that the system
can respond to unmeasured or unforeseen variations, making it more robust in
dynamic environments.

- what is control 4

• see the associated solution(s), if compiled with that ones :)

notes

Question 9

Open-loop control is more reliable than closed-loop control in all situations.

Potential answers:

I: (wrong) yes, open-loop is always more reliable
II: (correct) no, it depends on the system and application

III: (wrong) I do not know

Solution 1:

Open-loop control is simpler and can be more reliable in cases where the system is
predictable and not subject to disturbances. However, closed-loop control is more
reliable when disturbances or system variations are present, as it adjusts based
on feedback. The choice between open-loop and closed-loop control depends on
the specific system dynamics, complexity, and performance requirements. - what is control 5

• see the associated solution(s), if compiled with that ones :)

notes



Question 10

PID controllers are always preferable to MPC in terms of performance.

Potential answers:

I: (wrong) yes, PID always outperforms MPC
II: (correct) no, it depends on the system and objectives

III: (wrong) I do not know

Solution 1:

PID controllers are well-suited for simple systems with few inputs and outputs,
especially when the system is well-understood and not subject to significant distur-
bances. However, MPC can be more powerful in handling complex, multivariable
systems with constraints. MPC is capable of optimizing system behavior over a
time horizon, making it suitable for systems where PID controllers might not be
able to effectively manage multiple interacting variables or constraints. There-
fore, the choice depends on the system’s complexity and control objectives.

- what is control 6

• see the associated solution(s), if compiled with that ones :)

notes

Recap of sub-module “what is control”
• designing a controller means designing an algorithm that transforms information

into decision
• there are several types of controllers, each with pros and cons
• taking decisions (i.e., actuating u) means modifying the dynamics of the system

- what is control 7

• the most important remarks from this sub-module are these ones

notes


	what is control

