Systems Laboratory, Spring 2025

Damiano Varagnolo – CC-BY-4.0

- welcome to the course!
- on this side of this document you will find notes that accompany the text typically visualized in class
- these notes are meant to convey the messages that are not displayed in the text on the side, and basically constitute what the teacher intends to say in class

- 1

Table of Contents I

• building and interpreting phase portraits

• Most important python code for this sub-module

Self-assessment material

- building and interpreting phase portraits $\boldsymbol{1}$

Contents map

developed content units	taxonomy levels	
phase portrait	u1, e1	
prerequisite content units	taxonomy levels	
ODE	u1, e1	

building and interpreting phase portraits

The result, if we were plotting everything

- building and interpreting phase portraits 6

Phase Portrait = a graphical representation of the trajectories of a dynamical system in the state space

notes • A phase portrait provides insight into the qualitative behavior of a system without requiring explicit solutions. • It helps visualize equilibria, stability, and the general flow of solutions in state space.

Which system is this one?

And this one?

- building and interpreting phase portraits 7

- building and interpreting phase portraits 8

notes

pendulum with friction

Interpreting Phase Portraits

- equilibria: where trajectories do not move
- limit cycles: closed trajectories indicating periodic behavior

- building and interpreting phase portraits 11

Interpreting Phase Portraits

- equilibria: where trajectories do not move
- limit cycles: closed trajectories indicating periodic behavior

Interpreting Phase Portraits

- equilibria: where trajectories do not move
- limit cycles: closed trajectories indicating periodic behavior

Understanding phase portraits helps predict long-term system behavior.
Nonlinear systems may exhibit complex structures like attractors or chaotic dynamics.

- building and interpreting phase portraits 13

Interpreting Phase Portraits

- equilibria: where trajectories do not move
- limit cycles: closed trajectories indicating periodic behavior

notes

Interpreting Phase Portraits

- equilibria: where trajectories do not move
- limit cycles: closed trajectories indicating periodic behavior

Understanding phase portraits helps predict long-term system behavior.
Nonlinear systems may exhibit complex structures like attractors or chaotic dynamics.

- building and interpreting phase portraits 15

Most important python code for this sub-module

Tutorial on how to plot phase portraits

https://aleksandarhaber.com/

phase-portraits-of-state-space-models-and-differential-equations-in-python/

that tutorial is very well made, check it

- building and interpreting phase portraits 2

notes

Question 1

What is the primary purpose of a phase portrait?

Potential answers:

I:	(wrong)	To find the exact numerical solution of a system
II:	(correct)	To visualize the qualitative behavior of a dynamical system
III:	(wrong)	To approximate the integral of a function
IV:	(wrong)	To determine the frequency response of a system
V:	(wrong)	l do not know

Solution 1:

A phase portrait is a graphical representation of the trajectories of a system in state space, giving insight into equilibrium points, stability, and system behavior without solving the equations explicitly.

Question 2

How do you determine equilibrium points in a phase portrait of a first-order system $\dot{y} = f(y)$?

Potential answers:

I:	(wrong)	By solving $\dot{y} = 0$ for all values of t
II:	(<u>correct</u>)	By solving $f(y) = 0$ for y
III:	(wrong)	By integrating $f(y)$ over time
IV:	(wrong)	By setting $f(y)$ to a constant value
V:	(wrong)	l do not know

Solution 1:

Equilibrium points are the values of y where $\dot{y} = f(y) = 0$. These are points where the system remains at rest if not perturbed. - building and interpreting phase portraits 3

notes

Question 3

Which of the following best describes the phase portrait of the system $\dot{y} = y(1-y)$?

Potential answers:

I: (wrong)	It consists of a single trajectory with no equilibrium points
II: (correct)	It has two equilibrium points at $y = 0$ and $y = 1$, with flow
directions o	letermined by the sign of $f(y)$
III: (wrong)	It has infinitely many equilibrium points
IV: (wrong)	It has no equilibrium points and exhibits oscillatory behavior
V: (wrong)	I do not know

Solution 1:

The function f(y) = y(1 - y) has two roots at y = 0 and y = 1, which are the equilibrium points. The direction of flow depends on the sign of fully, and interpreting phase portraits 4

Question 4

What distinguishes the phase portrait of a second-order system from a first-order system?

Potential answers:

l: ((<u>wrong</u>)	Second-order phase portraits only have one equilibrium point
II: ((correct)	Second-order phase portraits require a two-dimensional state

- space (e.g., x vs. \dot{x})
- III: (wrong) First-order systems can have limit cycles, while second-order systems cannot
- IV: **(wrong)** Phase portraits for second-order systems do not contain information about stability
- V: (wrong) I do not know

Solution 1:

${\small Question} \ 5$

Which of the following statements about phase portraits of nonlinear systems is correct?

Potential answers:

I:	(wrong)	Nonlinear systems always have a single equilibrium point
II:	(wrong)	Nonlinear phase portraits can be analyzed only by solving the
	system num	erically
ш.	(correct)	Nonlinear phase pertraits may exhibit equilibrium points limit

- III: (correct) Nonlinear phase portraits may exhibit equilibrium points, limit cycles, and chaotic behavior
- IV: (wrong) Nonlinear phase portraits always resemble those of linear systems for small perturbations
- V: (wrong) I do not know

Solution 1:

- building and interpreting phase portraits 6

Nonlinear systems can have equilibrium points, periodic limit cycles, or even chaotic behavior depending on the dynamics. Their phase portraits often exhibit richer and more complex structures than linear systems.

Recap of sub-module "building and interpreting phase portraits"

- A phase portrait is a graphical representation of a dynamical systems trajectories in state space.
- Phase portraits provide qualitative insight into system behavior without requiring explicit solutions.
- First-order systems have a one-dimensional state space, while second-order systems require two dimensions, etc.

- building and interpreting phase portraits 7

see the associated solution(s), if compiled with that ones :)