Systems Laboratory, Spring 2025

Damiano Varagnolo – CC-BY-4.0

- welcome to the course!
- on this side of this document you will find notes that accompany the text typically visualized in class
- these notes are meant to convey the messages that are not displayed in the text on the side, and basically constitute what the teacher intends to say in class

- 1

Table of Contents I

- Most important python code for this sub-module
- Self-assessment material

- compute the equilibria of the system 1

Contents map

developed content units	taxonomy levels
equilibrium	u1, e1
prerequisite content units	taxonomy levels
ODE	u1, e1

Main ILO of sub-module $\underline{\ \ }$ compute the equilibria of the system "

Compute the equilibria of an ODE by solving for stationary points

by the end of this module you shall be able to do this

- compute the equilibria of the system 3

Is this in equilibrium?

_ notes

Are these in equilibrium, while falling?

- compute the equilibria of the system 5

Equilibrium = a trajectory that is constant in time

 $\dot{y}(t) = 0$

Example

temperature of a small brick in a very large room whose temperature is 20 degrees:

What does it mean that this system is in equilibrium from an intuitive point of view?

Equilibra as the zeros of **f**, graphically

Exemplified situation of *autonomous* single output systems:

Equilibra as the zeros of **f**, graphically

Exemplified situation of SISO (single input single output) systems:

https://www.geogebra.org/classic/mmppe6hs

- compute the equilibria of the system 11

Equilibra as the zeros of **f**, graphically

Exemplified situation of automonous multiple output systems:

(remember: y_{eq} , u_{eq} equilibrium iff $f(y_{eq}, u_{eq}) = 0$, i.e., all the components simultaneously!)

notes

Discussion: what are the equilibria in this case?

Discussion: can we have for this specific ODE an equilibrium if $u \neq \text{constant}$?

Another example: a Lotka-Volterra model (*≠* real world):

 $\begin{cases} \dot{y}_{\rm rabbits} &= 0.4 \cdot y_{\rm rabbits} - 0.5 \cdot y_{\rm rabbits} \cdot y_{\rm foxes} \\ \dot{y}_{\rm foxes} &= -3 \cdot y_{\rm foxes} + 0.7 \cdot y_{\rm rabbits} \cdot y_{\rm foxes} \end{cases}$

 $y_{\rm rabbits}, y_{\rm foxes}$

- compute the equilibria of the system 16

→ t

Summarizing

Compute the equilibria of an ODE by solving for stationary points

put f = 0 and compute the corresponding points. It may be that there is the need to put u = constant

notes	
 by the end of this module you shall be able to do this 	

- compute the equilibria of the system 17

- compute the equilibria of the system 1

Most important python code for this sub-module

Root finding in python

https://pythonnumericalmethods.studentorg.berkeley.edu/notebooks/ chapter19.05-Root-Finding-in-Python.html

notes
 this page explains how to find the zeros

What is the mathematical definition of an equilibrium point for a dynamical system $\dot{y} = f(y, u)?$

Potential answers:	
I: (wrong) II: (correct) III: (wrong) IV: (wrong) V: (wrong)	A point where $f(y, u)$ is maximized A point where $f(y, u) = 0$ A point where y is always increasing A point where y is always decreasing I do not know
Solution 1:	
An equilibrium	point is defined as a point where the system's derivative \dot{y} is zero,

meaning the state remains constant over time.

- compute the equilibria of the system 2

Question 2

Which of the following statements about equilibrium points is correct?

Potential answers:	
I: (wrong)	An equilibrium point is always stable
II: (correct)	An equilibrium point is where the system's state does not
change over time	
III: (wrong)	An equilibrium point is a location where external inputs are
irrelevant	
IV: (wrong)	An equilibrium point always corresponds to $y = 0$
V: (wrong)	l do not know

Solution 1:

An equilibrium point is defined as a state where the time derivative of the system of the system 3 is zero, meaning the system does not evolve from that state unless disturbed. Stability depends on additional conditions.

Graphically, how can equilibrium points be identified for an autonomous system $\dot{y} = f(y)$?

Potential answers:	
I: (wrong)	By finding where $y = 0$
II: (correct)	By finding the points where $f(y) = 0$ on the phase plot
III: (wrong)	By locating the steepest points of the function $f(y)$
IV: (wrong)	By identifying the points where y reaches its maximum or
minimum values	
V: (wrong)	l do not know

Solution 1:

Equilibrium points occur where $\dot{y} = f(y) = 0$, which correspond to the transformed to the system 4 tions of f(y) with the horizontal axis in a phase plot.

Question 4

Consider the system $\dot{T} = -0.5(T - 20)$. What is the equilibrium temperature?

Potential answers:		
T = 0		
<i>T</i> = 20		
T = -20		
T = 40		
l do not knov		

Solution 1:

Setting $\dot{T} = 0$ gives -0.5(T - 20) = 0, which simplifies to T = 20. This is the equilibrium point of the system.

- compute the equilibria of the system 5

For the linear system $\dot{y} = ay + bu$, under what condition is (y_0, u_0) an equilibrium?

Potential answers:

1: 	(wrong)	When $a = 0$ only
II: II:	(<u>correct</u>) (wrong)	When $y_0 + bu_0 = 0$ When $y_0 = 0$ and $u_0 = 0$ always
V:	(wrong)	When u_0 is arbitrary
V:	(wrong)	l do not know

Solution 1:

To find an equilibrium, set $\dot{y} = 0$, leading to ay + bu = 0. Solving for y_0 and u_0 gives the equilibrium condition.

- compute the equilibria of the system 6

notes	
see the associated solution(s), if compiled with that ones :)	

Question 6

If we have an autonomous time-varying ODE, can we have equilibria?

Potential answers:		
I: (wrong)	No, time-variation always prevents equilibria.	
II: (correct)	Yes, equilibria can exist if the system allows constant solutions.	
III: (wrong)	Only if the system is also linear.	
IV: (wrong)	Yes, but only if the system is also periodic.	
V: (wrong)	l do not know	
IV: (wrong) V: (wrong)	Yes, but only if the system is also periodic. I do not know	

Solution 1:

Equilibria exist when the derivative of the state variables is zero. Even though the system is time-varying, there can still be points where the vector field is zero, leading to equilibrium. For example, we may have $\dot{y} = ty$. When $y_{comp} Q_e$ we derive of the system 7 an equilibrium anyway.

Can we have dynamical systems that do not have any equilibria?

Potential answers:	
I: (wrong)	No, every system has at least one equilibrium.
ll: (correct)	Yes, with no fixed points may lack equilibria.
III: (wrong)	Only non-autonomous systems can lack equilibria.
IV: (wrong)	No, because every system must have at least a trivial equilibrium.
V: (wrong)	l do not know

Solution 1:

Very simple example: $\dot{y} = 1$.

- compute the equilibria of the system 8

Question 8

If we have a non-autonomous ODE, can we have equilibria if the input is always changing, e.g., $u = \sin(t)$?

Potential answers:

(<u>mons</u>)	res, the input does not uncer equilibrium conditions.
II: (wrong)	No, because a changing input continuously affects system states.
III: (wrong)	Only if the input has a zero mean.
IV: (wrong)	Yes, but only if the system is linear.
V: (correct)	Yes, and the system does not need to be linear.
VI: (wrong)	l do not know

Solution 1:

A simple example: $\dot{y} = yu$. For y = 0 we have for sure an equilibrium independently of the system 9 of u.

If we have a non-autonomous LTI ODE, can we have equilibria if the input is always changing, e.g., u = sin(t)?

Potential answers:

I: (wrong)	Yes, because LTI systems always have equilibria.
II: (correct)	No, because the continuously varying input prevents a steady
state.	
III: (wrong)	Only if the system has no damping.
IV: (wrong)	Yes, but only if the input is periodic.
V: (wrong)	l do not know

Solution 1:

For an LTI system, equilibrium requires all derivatives to be zero. A continuously of the system 10 varying input like u = sin(t) forces the system to evolve dynamically, preventing equilibrium.

Recap of sub-module "compute the equilibria of the system"

- Equilibria in dynamical systems correspond to points where the system's state does not change over time.
- Autonomous time-varying ODEs can have equilibria, but their location may vary with time.
- Some dynamical systems may not have equilibria, particularly if they involve unbounded growth.
- Non-autonomous LTI ODEs can have equilibria only if the input u(t) remains constant over time.

