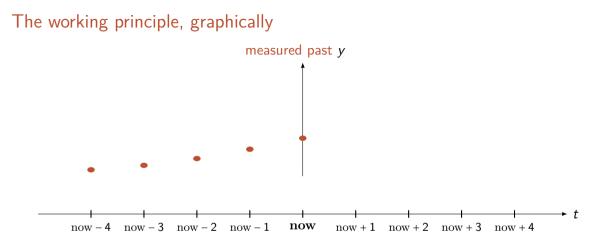
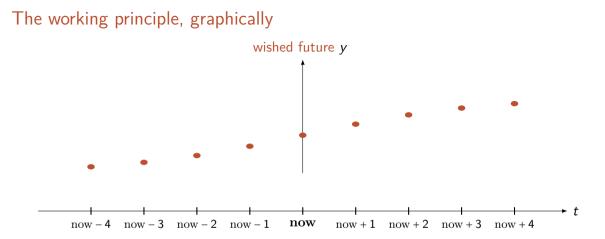
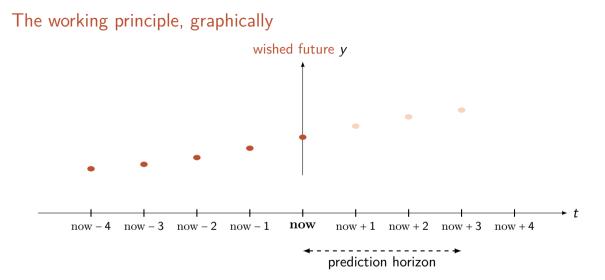
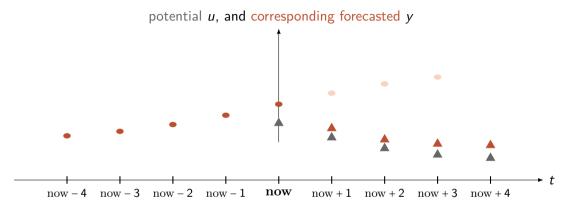
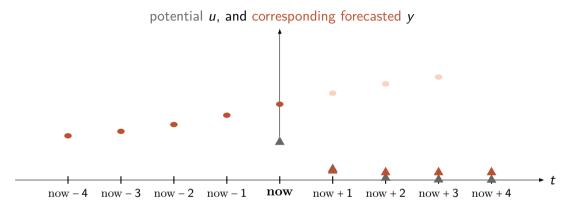

Contents map

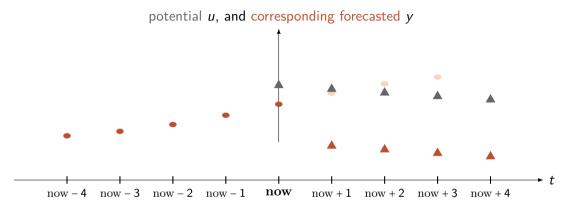

developed content units	taxonomy levels
tuning MPC	u2, e2
prerequisite content units	taxonomy levels
prerequisite content units MPC fundamentals	taxonomy levels u1, e1

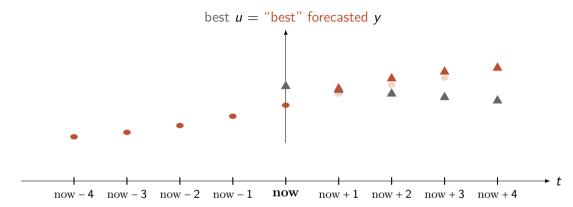

Main ILO of sub-module

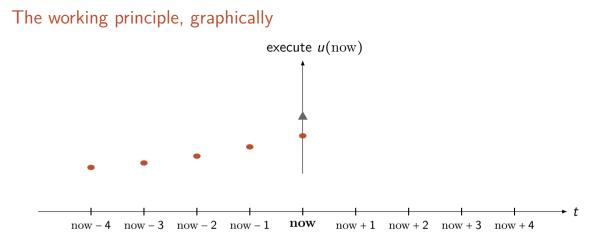

"Tuning Model Predictive Control for LTI Systems"

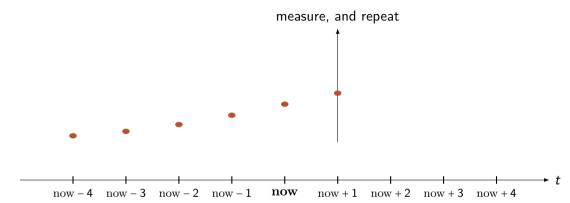

Design and tune an MPC controller for LTI systems to meet specified performance criteria



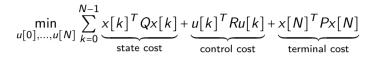








MPC in formulas

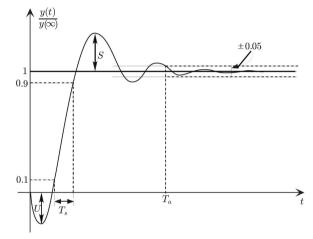

(for LTI systems)

assumed dynamics: $x_{k+1} = Ax_k + Bu_k$

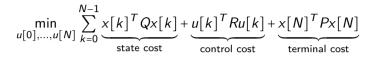
optimization problem:

$$\begin{array}{l} \min_{u[0],\dots,u[N]} \sum_{k=0}^{N-1} \underbrace{x[k]^T Qx[k]}_{\text{state cost}} + \underbrace{u[k]^T Ru[k]}_{\text{control cost}} + \underbrace{x[N]^T Px[N]}_{\text{terminal cost}} \\
\text{s.t.} \quad x_{k+1} = Ax[k] + Bu[k] \quad \forall k \in \{0,\dots,N-1\} \\
u_{\min} \leq u[k] \leq u_{\max} \\
x_{\min} \leq x[k] \leq x_{\max} \\
x[0] = x(t) \quad \text{(initial condition)} \\
\end{array}$$

Key parameters

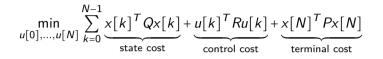


- prediction horizon N
- weight matrices Q, R, P
- the constraints parameters u_{min}, u_{max}, x_{min}, x_{max}


But which performance criteria shall we optimize?

Standard options:

- settling time
- overshoot
- control effort
- robustness
- computational efficiency



General trade-offs

- $\uparrow N \implies$ better performance but more computations
- $\uparrow Q \implies$ faster state convergence but more aggressive control
- $\uparrow R \implies$ smoother control but slower response

Tuning methodology

at every iteration, evaluate the performance and iteratively refine the parameters

- start with the infinite horizon equivalent (i.e., LQR)
- move to a shorter prediction horizon (5-20 samples)
- then adjust the weights (Q first, then R)

Summarizing

Design and tune an MPC controller for LTI systems to meet specified performance criteria

 determining performance requirements require simulating and evaluating to iteratively refine parameters

Most important python code for this sub-module

Model predictive control python toolbox

https://www.do-mpc.com/en/latest/

Self-assessment material

What is the primary effect of increasing the Q matrix in MPC tuning?

- I: Reduced computational requirements
- II: Smoother control actions
- III: Faster state convergence
- IV: Increased robustness to disturbances

What is the fundamental purpose of the terminal cost (P) in MPC?

- I: To reduce the computational complexity of the optimization
- II: To ensure stability by approximating infinite horizon behavior
- III: To enforce hard constraints on the system states
- IV: To prioritize certain states over others in the transient response
- V: I do not know

Why might increasing the prediction horizon N improve controller performance?

- I: It allows using larger Q matrices in the cost function
- II: The controller can account for longer-term system behavior
- III: It reduces the need for state constraints
- IV: It makes the optimization problem convex
- V: I do not know

What is the primary consequence of setting $\mathsf{R}=0$ in the MPC cost function?

- I: The controller will become unstable
- II: The state constraints will be ignored
- III: The controller may use arbitrarily large control inputs
- IV: The prediction horizon becomes irrelevant
- V: I do not know

Which of these represents a fundamental trade-off in MPC tuning?

- I: Between continuous-time and discrete-time formulations
- II: Between state estimation and control computation
- III: Between performance and computational complexity
- IV: Between linear and nonlinear system models
- V: I do not know

What is the main advantage of MPC compared to LQR control?

- I: MPC always requires less computational power
- II: MPC guarantees global optimality for nonlinear systems
- III: MPC can explicitly handle state and input constraints
- IV: MPC doesn't require a system model
- V: I do not know

Recap of sub-module "Tuning MPC for LTI Systems"

- MPC performance depends on careful parameter selection
- Prediction horizon affects stability and computation
- Weight matrices balance state vs control objectives
- Systematic tuning follows an iterative procedure