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Contents map

developed content units taxonomy levels
poles placement u1, e1

prerequisite content units taxonomy levels
feedback control u1, e1
state space LTI systems u1, e1
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Main ILO of sub-module “Full state feedback control”

Formulate a state feedback control law u = −Kx to
modify the closed-loop dynamics of a linear time-invariant

system, given matrices A and B in state-space form

Compute the matrix K to place the poles of the closed-loop sys-
tem at specified locations, using characteristic polynomial matching

Apply the pole placement algorithm to determine the feedback matrix K for a
system with A, B in control canonical form, using time-domain specifications
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note: the considerations below are the same
for both discrete time and continuous time LTIs
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Control-law design for full-state feedback – assumed structure

ẋ = Ax +Bu C y

−K

xu

u = −Kx = − [K1 . . . Kn]

⎡⎢⎢⎢⎢⎢⎢⎣

x1
...

xn

⎤⎥⎥⎥⎥⎥⎥⎦
(estimating x from the measurements = later on)
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Finding the control law

{ ẋ = Ax +Bu
y = Cx

“ + ” u = −Kx

⇓

ẋ = (A −BK)x
y = Cx

Important:

BK =

⎡⎢⎢⎢⎢⎢⎢⎣

b1
...

bn

⎤⎥⎥⎥⎥⎥⎥⎦

[K1 . . . Kn] =

⎡⎢⎢⎢⎢⎢⎢⎣

b1K1 ⋯ b1Kn
...

...

bnK1 ⋯ bnKn

⎤⎥⎥⎥⎥⎥⎥⎦
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Finding the control law – what are the poles now?

ẋ = (A −BK)x
y = Cx

⇒ det (sI − (A −BK)) = 0

choose K so that the closed-loop poles are where we like

Poles allocation algorithm
• from time-domain specifications, numerically determine the n desired poles

p1, . . . , pn

• numerically compute the desired denominator of the closed loop TF as
n
∏
i=1
(s − pi)

• compute det (sI − (A −BK)) as a function of K1, . . . , Kn
• find K1, . . . , Kn by equating the two polynomials
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ẋ = (A −BK)x
y = Cx

⇒ det (sI − (A −BK)) = 0

choose K so that the closed-loop poles are where we like

Poles allocation algorithm
• from time-domain specifications, numerically determine the n desired poles

p1, . . . , pn

• numerically compute the desired denominator of the closed loop TF as
n
∏
i=1
(s − pi)

• compute det (sI − (A −BK)) as a function of K1, . . . , Kn
• find K1, . . . , Kn by equating the two polynomials

- Full state feedback control 7



Finding the control law – what are the poles now?
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Example

Close the loop around the open loop system { [ẋ1
ẋ2
] = [1 0

0 −0.5] [
x1
x2
] + [11]u so

that the closed loop is stable and with raise time not longer than 5 seconds

(recall: G(s) = ω2
n

s2 + 2ζωns + ω2
n
→ rise time tr =

1.8
ωn
)
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Finding the control law – drawback when A has no special structure
Example:

A =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

5 1 3 8 3
7 3 9 6 9
9 4 4 1 7
2 2 5 3 6
1 1 0 1 4

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

B =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

3
4
1
0
9

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

drawback: doing as before is cumbersome

↓

is there any alternative way of finding K?
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Determinant of a matrix in control canonical form
Let

A =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−a1 −a2 . . . . . . −an
1 0 . . . . . . 0
0 1 0 . . . 0

. . .
. . .

. . .

0 1 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
then

det (sI −A) = sn + a1sn−1 + . . . + an
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Incidentally. . .

Y (s) = b1sn−1 + . . . + bn
sn + a1sn−1 + . . . + an

U(s)

↦ A =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−a1 −a2 . . . . . . −an
1 0 . . . . . . 0
0 1 0 . . . 0

. . .
. . .

. . .

0 1 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

↦ det (sI −A) = sn + a1sn−1 + . . . + an
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Finding the control law with (A, B) in control canonical form

B =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
0
...

0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⇒ BK =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

K1 K2 ⋯ Kn
0 0 ⋯ 0
...

...
...

0 0 ⋯ 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
so that

A −BK =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−a1 −K1 −a2 −K2 . . . . . . −an −Kn
1 0 . . . . . . 0
0 1 0 . . . 0

. . .
. . .

. . .

0 1 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
and thus the poles of the closed loop system are the roots of

det (sI − (A −BK)) = sn + (a1 +K1) sn−1 + . . . + (an +Kn)
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Summary (valid also for discrete-time systems!)

(A, B) in control canonical form + K generic
⇓

closed loop is ẋ = (A −BK)x =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−a1 −K1 −a2 −K2 . . . . . . −an −Kn
1 0 . . . . . . 0
0 1 0 . . . 0

. . .
. . .

. . .

0 1 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

x

⇓
poles of the closed loop system = roots of

det (sI − (A −BK)) = sn + (a1 +K1) sn−1 + . . . + (an +Kn)
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Summary of the algorithm for (A, B) in control canonical form
• from time domain specifications, find the desired poles p1, . . . , pn

• form the desired characteristic polynomial

α(s) =
n
∏
i=1
(s − pi) = sn + α1sn−1 + . . . + αn

• find K s.t. det (sI −A +BK) = α(s) by solving

⎡⎢⎢⎢⎢⎢⎢⎣

α1
...

αn

⎤⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎣

a1 +K1
...

an +Kn

⎤⎥⎥⎥⎥⎥⎥⎦
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Example

Close the loop around the discrete time open loop system A =

⎡⎢⎢⎢⎢⎢⎢⎣

1 2 3
1 0 0
0 1 0

⎤⎥⎥⎥⎥⎥⎥⎦

B =

⎡⎢⎢⎢⎢⎢⎢⎣

1
0
0

⎤⎥⎥⎥⎥⎥⎥⎦
with sampling period 0.2 seconds so that the closed loop raise time is not longer than
10 seconds

(recall: G(s) = ω2
n

s2 + 2ζωns + ω2
n
→ rise time tr =

1.8
ωn

but we need to discretize!)
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Test this out: write a K that makes the discrete time open loop system

A = [1 2
1 0] B = [10]

with sampling period 0.5 seconds have a raise time is not longer than 15 seconds.
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Fundamental difference with PIDs

det (sI − (A −BK)) = sn + (a1 +K1) sn−1 + . . . + (an +Kn)

state-feedback in fully controllable systems allows al-
locating all the closed loop poles wherever one wants
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Caveats
• weak controllability
• the more you move poles, the more you use actuators (risk of saturations!)
• effect of zeros
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Do we actually need to compute the control canonical form?

no, there exists the so-called Ackermann’s formula

K = [0 . . . 0 1] C−1α(A)

we will though do not cover it - will be in follow up courses!
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But how do we select the locations of the poles?
Strategies:

• in this course, dominant second-order poles approximations

• in follow up courses, very many other ones!

- Full state feedback control 20



Summarizing

Formulate a state feedback control law u = −Kx to
modify the closed-loop dynamics of a linear time-invariant

system, given matrices A and B in state-space form

Compute the matrix K to place the poles of the closed-loop sys-
tem at specified locations, using characteristic polynomial matching

Apply the pole placement algorithm to determine the feedback matrix K for a
system with A, B in control canonical form, using time-domain specifications
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Most important python code for this sub-module
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control (Python Control Systems Library)
main functions:

• acker (Ackermann’s method)
• place (robust pole placement)
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Self-assessment material
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Question 1

What is the primary advantage of state feedback control with pole placement
compared to PID control?

Potential answers:

I: PID control is always more stable than state feedback.
II: State feedback allows arbitrary placement of all closed-loop poles when the

system is fully controllable.
III: State feedback does not require knowledge of the system’s state variables.
IV: PID control can achieve faster response times than state feedback.
V: I do not know
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Question 2

Why is the control canonical form particularly useful for pole placement problems?

Potential answers:

I: It makes the system matrix A diagonal.
II: It eliminates all zeros from the transfer function.

III: The coefficients of the characteristic polynomial appear directly in the first
row of A.

IV: It guarantees that the system will be observable.
V: I do not know
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Question 3

What is a major practical limitation of aggressive pole placement through state
feedback?

Potential answers:

I: It makes the system uncontrollable.
II: It may require large control inputs that could lead to actuator saturation.

III: It always makes the system unstable.
IV: It prevents the use of output feedback.
V: I do not know

- Full state feedback control 4



Question 4

When designing state feedback control, why might we choose poles with dominant
second-order characteristics?

Potential answers:

I: Because higher-order systems cannot be controlled effectively.
II: Because it eliminates all zeros from the system.

III: Because it allows us to approximate the response using familiar second-order
performance measures.

IV: Because it guarantees minimum-phase behavior.
V: I do not know
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Recap of sub-module “Full state feedback control”
• full state feedback enables placing the poles wherever one wants
• with respect to PID it has more flexibility
• this comes with the cost of having a sufficiently accurate model (and that the

model can be written in control canonical form, something that is not always
guaranteed!)
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?
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