PID Controllers

- PID Controllers 1

Contents map

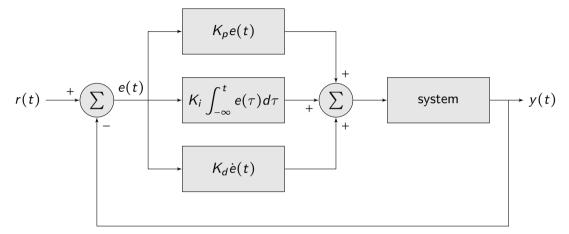
developed content units	taxonomy levels
empirical tuning of PID	u2, e3
pole placement with PID	u2, e3

prerequisite content units	taxonomy levels
transfer function	u1, e2
PID controller	u1, e2

Main ILO of sub-module "PID Controllers"

Design a PID controller to place the closed-loop poles at desired locations

Crash-slide on PIDs



implicit assumption: we can measure y(t)! (see also https://www.youtube.com/watch?v=UROhOmjaHp0!) How does changing the PID gains impact the Closed-Loop response?

K_P

- $\uparrow \Longrightarrow$ faster response, but may cause overshoot/oscillations
- $\downarrow \implies$ slower response, reduced overshoot (but higher steady-state error)

How does changing the PID gains impact the Closed-Loop response?

K_P

- $\uparrow \Longrightarrow$ faster response, but may cause overshoot/oscillations
- $\downarrow \implies$ slower response, reduced overshoot (but higher steady-state error)

K_l

- $\uparrow \implies$ eliminates steady-state error faster, but risks instability/windup
- $\downarrow \Longrightarrow$ reduces oscillations but may leave residual error

How does changing the PID gains impact the Closed-Loop response?

K_P

- $\uparrow \Longrightarrow$ faster response, but may cause overshoot/oscillations
- $\downarrow \implies$ slower response, reduced overshoot (but higher steady-state error)

K_l

- $\uparrow \implies$ eliminates steady-state error faster, but risks instability/windup
- $\downarrow \Longrightarrow$ reduces oscillations but may leave residual error

K_D

- $\uparrow \Longrightarrow$ dampens oscillations, improves stability (but amplifies noise)
- $\downarrow \Longrightarrow$ smoother control, but slower rejection of disturbances

model free tuning

Manual Tuning (Trial and Error)

this approach works only for already stable systems!

Algorithm:

- start with all gains at zero $(K_P = 0, K_I = 0, K_D = 0)$
- increase K_P until the system oscillates
- add K_D to dampen oscillations
- introduce K₁ to eliminate steady-state error
- iteratively fine-tune for desired performance

Ziegler-Nichols (Open-Loop) Method (A step-response based tuning)

Algorithm:

- Apply a step input, and measure:
 - dead time (L), i.e., if there is a delay before the response
 - time constant (*T*)
- Use the Z-N table:

$$K_P = 1.2T/L \qquad T_I = 2L \qquad T_D = 0.5L$$

- Connect in closed-loop, test, and refine

Ziegler-Nichols (Closed-Loop) Method (... for a more aggressive tuning)

Algorithm:

- Set $K_I = 0$, $K_D = 0$
- Increase K_P until the output shows sustained oscillations (K_u)
- Measure the oscillation period (P_u)
- Use the alternative Z-N table

$$K_P = 0.6K_u \qquad T_I = P_u/2 \qquad T_d = P_u/8$$

- Test, and refine

Other Empirical PID Tuning Methods

When no plant model is available

- Relay Tuning (Åström-Hägglund): set on-off switching to estimate K_u and P_u
- Cohen-Coon: optimized for disturbance rejection (open-loop)
- Tyreus-Luyben: conservative Z-N modification for robustness
- Software Auto-Tuning: automated gain calculation via test signals

When Matlab definitely rules

https://www.mathworks.com/help/slcontrol/cat_scd_pid_autotuning.html

When shall I use model-free PID tuning?

When, simultaneously:

- the plant dynamics are simple
- there are no big safety risks
- a rough tuning suffices
- you need quick deployment

When shall I avoid model-free PID tuning?

If at least one of the following happens:

- the system is unstable/high-order
- doing testing means risking damaging something
- precision is critical
- you know that strong nonlinearities will be present

model based tuning (via poles placement)

Example with a first-order plant

Given: $G(s) = \frac{1}{s+1}$ (first-order system)

Goal: have a closed-loop pole at s = -4

Try: use a proportional controller: $C(s) = K_P$

Find the closed-loop TF: $\frac{K_P G(s)}{1 + K_P G(s)} = \frac{K_P}{s + 1 + K_P}$

Set the parameter accordingly: $s + (1 + K_P) = s + 4 \implies K_P = 3$

Example with a second-order plant

Given:
$$G(s) = \frac{1}{s(s+1)}$$

Goal: have two closed-loop poles at $s = -2 \pm j2$ (and thus $s^2 + 4s + 8$)

Try: use a PID controller:
$$C(s) = K_P + \frac{K_I}{s} + K_D s$$

Find the closed-loop TF: i.e., find the ddenominator of 1 + C(s)G(s) and set it so to contain the wished roots

Summarizing, poles placement =

- pick the desired poles based on time response specifics
- derive desired characteristic polynomial
- write the closed-loop transfer function with the PID parameters
- match the polynomials & solve for K_P , K_I , K_D

Will you always be able to place all the poles where you want?

NO!

- PID Controllers 5

Most important python code for this sub-module

Python Enables Symbolic Matching of PID Coefficients

sympy

Self-assessment material

- PID Controllers 1

What is the first step in designing a PID controller using pole placement?

- I: Tune K_P using trial-and-error
- II: Write the plant transfer function in state-space
- III: Choose desired closed-loop poles based on time-domain specs
- IV: Set the integral gain to zero initially

What is the main goal of pole placement when designing a controller?

- I: To cancel all poles and zeros of the system
- II: To achieve desired time-domain behavior such as settling time and overshoot
- III: To make the transfer function purely algebraic
- IV: To eliminate the need for feedback
- V: I do not know

How does the derivative term (K_D) in a PID controller primarily affect the pole placement of a system?

- I: It shifts the system poles toward the imaginary axis
- II: It always eliminates steady-state error
- III: It has no influence on the pole placement
- IV: It influences the damping and stability by modifying the characteristic equation
- V: I do not know

What is the key mathematical operation used to design PID gains through pole placement?

- I: Taking the inverse Laplace transform of the plant
- II: Eliminating zeros from the open-loop transfer function
- III: Matching the closed-loop characteristic polynomial to a desired one
- IV: Factorizing the numerator of the open-loop transfer function
- V: I do not know

In a first-order system controlled by a proportional gain K_P , what is the effect of increasing K_P ?

- I: The pole moves further left on the real axis, increasing system speed
- II: The pole becomes complex and causes oscillations
- III: The system gain decreases and response slows down
- IV: The zero of the system moves into the right-half plane
- V: I do not know

Which of the following best describes the correct order of steps for PID pole placement design?

- I: Compute the system output first, then choose PID gains, then set desired poles
- II: Start with experimental PID gains, simulate, and refine based on intuition
- III: Choose desired poles, derive the corresponding characteristic polynomial, and match it with the actual closed-loop polynomial to solve for gains
- IV: Eliminate the need for poles by transforming to frequency domain
- V: I do not know

Recap of sub-module "PID Controllers"

- Pole placement allows us to achieve desired dynamics
- PID gains shift the closed-loop poles
- Match desired characteristic polynomial with actual one
- Use symbolic or numerical tools to solve for K_P , K_I , K_D

- PID Controllers 9

?