Introduction to Open-Loop Controller Design

Contents map

developed content units	taxonomy levels
closed-loop control	u1, e1
open-loop control	u1, e1
prerequisite content units	taxonomy levels
LTI system	u1, e1

Main ILO of sub-module "Introduction to Open-Loop Controller Design"

Explain the difference between open-loop and closed-loop control architectures, using the car speed control example as context.

Formulate the mathematical model of a physical system (car dynamics) and linearize it around a desired equilibrium point.

Design a basic open-loop controller by inverting the system model or its DC gain, and analyze its limitations in terms of disturbance rejection and parameter sensitivity.

Evaluate the trade-offs between response speed and actuator effort when implementing pole cancellation in open-loop control design.

Assess the practical challenges of implementing open-loop control in real-world systems using the automatic gate example as a case stuffy.

Roadmap

- overview of the structure
- building intuition through an example

What do we learn now?

introduction to how to design an open-loop controller

Basic Control Architectures: open-loop vs. closed-loop (or feedback)

Signals:

- output: y(t) car speed
- input: u(t) force generated by an engine
- disturbance: d(t) road slope

Goal:

find $u(t) = \phi(\star)$ such that $y(t) \simeq \alpha r(t)$ regardless of d

Model parameters:

- *m*: car mass
- *b*: friction coefficient
- g: gravitational acceleration

how to do it?

Strategy:

- find the system model
- linearize it around the desired equilibrium
- find the transfer function of the system
- design the controller so that the closed-loop system transfer function is the one we want

$$m\dot{y}(t) = -by(t) + u(t) - mg\sin\left(d(\int ydt)\right)$$

Linearized model:

$$m\dot{y}(t) = -by(t) + u(t) - mgd(t)$$

Laplace (model):

$$Y(s) = \frac{1}{ms+b} (U(s) - mgD(s))$$

Fundamental architectures for car speed control: open-loop vs. closed-loop (or feedback)

= inversion of the system model

What are the problems?

What are the problems?

How to solve this? We settle for the output to follow the reference only at steady state \implies we only invert the DC gain

= inversion of the system model gain

= inversion of the system model gain

but the rise time depends on m and b!

= inversion of the system model gain and cancellation of the stable pole

and the rise time depends on the controller parameters

What if we could measure or predict d?

Open-loop control of a car's speed

Generalization of the example

- Objectives of open-loop control: $W_{ry}(s) \simeq \alpha \quad W_{dy}(s) \simeq 0$
- Problems of open-loop control:
 - need to know exactly the model and its parameters
 - need to measure disturbances
 - impossibility to control unstable systems

Practical example: DIY automatic gate in open loop

Recipe:

- buy and install the gate
- do some experiments to understand the linear regime
- create a model from the data
- invert it
- build an RCL circuit that implements that controller

Summarizing

Explain the difference between open-loop and closed-loop control architectures, using the car speed control example as context.

Formulate the mathematical model of a physical system (car dynamics) and linearize it around a desired equilibrium point.

Design a basic open-loop controller by inverting the system model or its DC gain, and analyze its limitations in terms of disturbance rejection and parameter sensitivity.

Evaluate the trade-offs between response speed and actuator effort when implementing pole cancellation in open-loop control design.

Assess the practical challenges of implementing open-loop control in real-world systems using the automatic gate example as a case Study of Controller Design 23

Most important python code for this sub-module

The python.control library

... as virtually in all the modules of this part of the course

Self-assessment material

What is the fundamental limitation of open-loop control compared to closed-loop control?

- I: It requires more computational power
- II: It cannot compensate for unmeasured disturbances or model inaccuracies
- III: It only works for nonlinear systems
- IV: It requires more sensors than closed-loop control
- V: I do not know

Why do we typically linearize nonlinear system models before designing controllers?

- I: Because all physical systems are fundamentally linear
- II: Because nonlinear controllers cannot be implemented in practice
- III: Because most controller design tools and analysis methods are developed for linear systems
- IV: Because linearization increases system stability
- V: I do not know

In the car speed control example, why can't perfect disturbance rejection be achieved in practice through open-loop control?

- I: Because disturbances cannot be measured under any circumstances
- II: Because it requires perfect knowledge of both the system model and disturbance characteristics
- III: Because open-loop controllers are inherently unstable
- IV: Because the car's mass changes during operation
- V: I do not know

What is the main practical issue with designing an open-loop controller by perfectly inverting the system model?

- I: It makes the system too fast
- II: It often results in a non-causal controller that requires knowledge of future inputs
- III: It requires solving differential equations in real-time
- IV: It makes the control signal too smooth
- V: I do not know

In the car speed control example, why might choosing a very small time constant in the controller be problematic?

- I: It would make the controller too simple
- II: It would require unrealistically large control forces from the engine
- III: It would make the car accelerate too slowly
- $\ensuremath{\mathsf{IV}}\xspace$. It would prevent the car from reaching the desired speed
- V: I do not know

Recap of module "Introduction to Open-Loop Controller Design"

open-loop control is structurally simple but not very robust

- Introduction to Open-Loop Controller Design 8

?

Introduction to closed-loop controller design

- Introduction to closed-loop controller design 1

Contents map

developed content units	taxonomy levels
closed-loop control	u1, e1
prerequisite content units	taxonomy levels
LTI system	u1, e1

Main ILO of sub-module "Introduction to closed-loop controller design"

Explain the fundamental differences between open-loop and closed-loop control systems in terms of error correction and disturbance rejection

Roadmap

- what it is
- examples

What do we learn now?

introduction to how to design a closed-loop controller

Fundamental control architectures: open-loop vs. closed-loop (or feedback)

- Introduction to closed-loop controller design 6

Notation

- G(s): Transfer function of the system to be controlled
- H(s): Transfer function of the sensor
- *C*(*s*): Transfer function of the controller
- F(s): Transfer function of the shaping filter

By moving blocks we can switch to standard notation

- Introduction to closed-loop controller design 8

But what would we ideally want?

$$W_{ry}(s) = \frac{C(s)G(s)}{1+C(s)G(s)} \approx 1 \implies y(t) \approx r(t)$$
$$W_{dy}(s) = \frac{1}{1+C(s)G(s)} \approx 0 \implies y(t) \approx \text{ not affected by } d(t)$$

- Introduction to closed-loop controller design 9

And how is it done 90% of the time?

With

- C(s) = K_p, proportional controller
 C(s) = K_p + K_i, proportional-integral controller
- C(s) = K_p + K_ds, proportional-derivative controller
 C(s) = K_p + K_i/s, proportional-integral-derivative controller

And how to build a PID?

- analog: https://www.youtube.com/watch?v=Sw3NEA3GEnI
- digital: in a few modules

Example: car speed control with a P controller

with
$$C(s) = K$$
 and $G(s) = \frac{1}{ms+b}$, implying
 $W_{ry}(s) = \frac{C(s)G(s)}{1+C(s)G(s)} = \frac{K}{ms+b+K} \approx 1 \implies y(t) \approx r(t)$
 $W_{dy}(s) = \frac{-mgG(s)}{1+C(s)G(s)} = \frac{-mg}{ms+b+K} \approx 0 \implies y(t) \approx \text{ not affected by } d(t)$

- Introduction to closed-loop controller design 12

Summarizing

Explain the fundamental differences between open-loop and closed-loop control systems in terms of error correction and disturbance rejection

Most important python code for this sub-module

- Introduction to closed-loop controller design 1

The python.control library

... as virtually in all the modules of this part of the course

Self-assessment material

- Introduction to closed-loop controller design 1

What is the primary conceptual advantage of closed-loop control over open-loop control?

- I: Ability to automatically correct errors using feedback
- II: Higher computational efficiency in implementation
- III: Elimination of all system disturbances
- IV: Reduced need for sensors in the system
- V: I do not know

Why are PID controllers so widely used in practice despite their simplicity?

- I: They can perfectly eliminate all system nonlinearities
- II: They provide effective performance across many applications with relatively simple implementation
- III: They require no tuning parameters for optimal performance
- IV: They eliminate the need for system modeling entirely
- V: I do not know

In the standard closed-loop control notation, what does the transfer function $W_{dy}(s) \approx 0$ imply about the system?

- I: The system cannot track reference signals
- II: The controller has become unstable
- III: The system effectively rejects disturbances
- IV: The sensor measurements are inaccurate
- V: I do not know

What fundamental limitation prevents a real control system from achieving perfect tracking $(W_{ry}(s) = 1)$ and perfect disturbance rejection $(W_{dy}(s) = 0)$ simultaneously?

- I: The need for digital implementation
- II: Sensor accuracy limitations
- III: Fundamental trade-offs between performance, robustness, and stability
- IV: The cost of high-quality actuators
- V: I do not know

In the car speed control example with a P controller, what happens to both $W_{ry}(s)$ and $W_{dy}(s)$ as the proportional gain K is increased?

- I: Both transfer functions approach infinity
- II: $W_{ry}(s)$ approaches 0 while $W_{dy}(s)$ approaches 1
- III: $W_{ry}(s)$ approaches 1 while $W_{dy}(s)$ approaches 0
- IV: Both transfer functions become oscillatory
- V: I do not know

Recap of module "Introduction to closed-loop controller design"

 feedback control is more promising, but requires designing more things compared to open loop