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Contents map

developed content units taxonomy levels
regularization u1, e1
regularization path u1, e1
ridge regression u1, e1
Lasso u1, e1

prerequisite content units taxonomy levels
bias variance tradeoff u1, e1
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Main ILO of sub-module “Regularization”

Compare different regularization techniques (ridge, lasso,
and elastic net) by evaluating their mathematical formula-
tions, graphical interpretations, and practical implications

Interpret regularization paths from Lasso regression plots to iden-
tify the relative importance of features in predictive modeling
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Regularization = trading off variance with some bias
main intuition: if θ̂ has a variance V , then 0.9θ̂ has a variance 0.81V at the same
time this will likely increase the bias:
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(i.e., the potential datasets)

codomain
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Regularization = trading off variance with some bias
if θ̂ has a variance V and bias B, then there will be a specific γθ̂ that minimizes
V +B2 (but we can’t know a priori which γ is best):
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the Stein’s effect
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An interesting example: the Stein’s effect (in words)
(caveat: the next 3 slides are just motivational, not for the exam)

when estimating several parameters simultaneously, it’s possible to improve
overall estimation accuracy by borrowing strength across parameters,
even if individual estimators may appear less accurate when considered
in isolation
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An example of the Stein’s effect in formulas
Given

yt = θt + et et ∼ N (0, σ2) i.i.d. θt ∈ R y ∶=
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Then
θLS = y does not minimize E [∥θ̂ − θ∥

2
]

and
θJS ∶= (1 −

N − 2
∥y∥22

σ2
)y

has lower MSE than the LS solution
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What is happening?
In this case

θJS = (1 −
N − 2
∥y∥22

σ2
)y

is a "regularized" version of
θLS = y
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ridge regularization
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One of the most used regularization techniques: L2 (a.k.a. "ridge")

J(θ) = Joriginal(θ) + γ∥θ∥22

Animation: https://www.geogebra.org/m/myfghjzg
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Ridge regression = the most common approach to regularization

J(θ) =
m
∑
i=1

⎛

⎝
yi − θ0 −

p
∑
j=1

θjxij
⎞
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2

+ λ
n
∑
j=1

θ2
j
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Lasso regularization
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The second most used regularization technique: L1 (a.k.a. "lasso")
(actually this one typically works better than ridge!)

J(θ) = Joriginal(θ) + γ∥θ∥1

Animation: https://www.geogebra.org/m/gaujemka
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Lasso regression = the most common approach to regularization when one
wants to promote sparsity (i.e., parsimonious models)

J(θ) =
m
∑
i=1

⎛
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A plot you should always include in your reports: the L1 regularization path
(this is an implicit way to understand the relative importance of the features)
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extensions
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Elastic net = ridge + lasso
Last most-common regularization approach: combine the two into λ1 ∥θ∥

2
1 + λ2 ∥θ∥

2
2
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A common way to represent regularization graphically
(Damiano’s opinion: not as good as the 3D ones in geogebra)
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Bayesian interpretation
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Regularization may be seen with the Bayesian googles
(also this part is not for the exam)

Interesting mathematical objects:
• regularized optimization: min

θ
J(θ) + γR(θ)

• bayesian MAP estimation: max
θ

p(θ∣y)∝ p(y ∣θ)p(θ)

Actually sometimes they coincide!
• L2 regularization ⇔ Gaussian prior
• L1 regularization ⇔ Laplace prior
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From regularization to MAP estimation
Example for linear regression with L2 regularization

Ridge: min
θ
∥y −Xθ∥2 + λ∥θ∥2

MAP: max
θ
N (y ∣Xθ, σ2I) ⋅N (θ∣0, τ2I) with λ = σ2

/τ2

- Regularization 3



From regularization to MAP estimation
Example for linear regression with L1 regularization

Lasso: min
θ
∥y −Xθ∥2 + λ∥θ∥1

MAP: max
θ
N (y ∣Xθ, σ2I) ⋅ Laplace(θ∣0, b)
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Important implication

if you have your own prior for your own problem, you
should design your regularization term in an ad-hoc way

Very interesting example of this: “stable splines kernels” for system identification
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Summarizing

Compare different regularization techniques (ridge, lasso,
and elastic net) by evaluating their mathematical formula-
tions, graphical interpretations, and practical implications

Interpret regularization paths from Lasso regression plots to iden-
tify the relative importance of features in predictive modeling

• L2 and L1 regularization techniques place different additional weights to the cost
functions

• graphically seeing how they work is essential to fix the understanding behind them
• L1 is especially useful to perform features selection
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Most important python code for this sub-module
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Core Scientific Computing
• NumPy: Fundamental package for numerical computations
• SciPy: Advanced scientific computing (optimization, linear algebra)
• Matplotlib: Publication-quality visualization
• Pandas: Data manipulation and analysis
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Machine Learning Focus
• scikit-learn: Main library for LS implementations

• Ridge/Lasso/ElasticNet implementations
• Cross-validation tools
• Regularization path visualization

• statsmodels: Formal statistical modeling
• autograd/JAX: For advanced gradient computations
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Specialized Visualization
• Seaborn: Enhanced statistical visuals
• Plotly: Interactive regularization path plots
• mpld3: D3.js integration for matplotlib
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Teaching-Specific Tools
• ipywidgets: Interactive demonstrations
• sklearn-evaluation: Enhanced model evaluation
• alive-progress: For long computations during demos
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Self-assessment material
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Question 1

What is the primary purpose of regularization in statistical learning?

Potential answers:

I: To increase model complexity and fit training data perfectly
II: To reduce overfitting by trading some bias for lower variance

III: To eliminate all bias from the model estimates
IV: To make computations faster by reducing matrix dimensions
V: I do not know
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Question 2

In ridge regression, what Bayesian prior does the L2 penalty term correspond to?

Potential answers:

I: Uniform prior over all parameters
II: Laplace (double exponential) prior

III: Gaussian prior centered at zero
IV: Poisson prior with =1
V: I do not know
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Question 3

Why does L1 regularization (lasso) tend to produce sparse solutions with exactly zero
coefficients?

Potential answers:

I: Because it uses a logarithmic penalty term
II: Due to the sharp corners of the L1 constraint region

III: Because it maximizes the likelihood more aggressively
IV: It doesn’t - this is a common misconception
V: I do not know
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Question 4

What surprising result does the James-Stein estimator demonstrate about maximum
likelihood estimation?

Potential answers:

I: LS estimators always have minimum variance
II: LS can be dominated by shrinkage estimators when estimating multiple pa-

rameters
III: LS becomes biased when sample size exceeds 30
IV: LS requires normally distributed errors
V: I do not know
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Question 5

When examining a lasso regularization path plot, how should you interpret features
whose coefficients become non-zero earliest as decreases?

Potential answers:

I: They are likely measurement errors
II: They should be removed from the model

III: They are the most important predictors
IV: They have the smallest scale
V: I do not know
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Recap of sub-module “Regularization”
• adding regularization and non-L2 costs noticeably extends capabilities of

estimators, at the cost though of introducing some hyperparameters that need to
be tuned too from the data
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