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Contents map

developed content units taxonomy levels
ill conditioning u1, e1
ill posedness u1, e1

prerequisite content units taxonomy levels
least squares regression u1, e1
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Main ILO of sub-module “Ill conditioning”

Describe what ill conditioning and ill posed-
ness mean, in the context of system identification

Recognize when ill conditioning may happen in practice
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Starting point: system identification
starting from

y[k] = f (u[k], u[k − 1], . . . ) + d[k] D = {u[k], y[k]}k∈K

identify the model f (⋅)

U F Y

- Ill conditioning 4



Definition of ill-posedness and ill-conditioning

y[k] = f (u[k], u[k − 1], . . . ) + d[k] D = {u[k], y[k]}k∈K

U F Y

• ill-posed problem (in the Hadamard sense): solution is either not unique or does
not depend continuously on the data

• ill-conditioned problem: solution is very sensitive to the data
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Example: the Hunt reconstruction problem
(continuous-time LTI with sampled output)

h(t) = exp(−( t − 0.4
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0
h(τ)u(t − τ)dτ y[k] = ynoiseless[k] + v(k)
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This problem can be solved with linear algebra!

y = Uh + d ⇒ ĥ = (UT U)−1 UT y
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Is the Hunt reconstruction problem well defined?
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ĥ[k]

- Ill conditioning 8



Is the Hunt reconstruction problem well defined?
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Is the Hunt reconstruction problem well defined?
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Is the Hunt reconstruction problem well defined?
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What is happening?

e = h − ĥ = U−1d

∥e∥
∥h∥
≤

σmax(U)
σmin(U)

∥d∥
∥Uh∥

• the slower u the higher σmax(U)
σmin(U)

• the faster ∆ the higher σmax(U)
σmin(U)
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how can we improve our estimates?
↦ regularization
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Summarizing

Describe what ill conditioning and ill posed-
ness mean, in the context of system identification

Recognize when ill conditioning may happen in practice

• TODO
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Most important python code for this sub-module
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Linear algebra tools
• numpy.linalg.solve
• numpy.linalg.inv
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Self-assessment material
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Question 1

Which of the following best describes the difference between an ill-posed and an
ill-conditioned problem in system identification?

Potential answers:

I: Ill-conditioned problems have no solution, while ill-posed problems have too
many.

II: Ill-posed problems may lack uniqueness or continuous dependence on the
data, while ill-conditioned problems are extremely sensitive to small changes
in data.

III: Ill-posed problems always have unstable solutions, while ill-conditioned ones
always diverge.

IV: Ill-conditioning is due to randomness in the input, while ill-posedness is due
to measurement noise.

V: I do not know
- Ill conditioning 2



Question 2

Why does the Hunt reconstruction problem become ill-conditioned as the length of the
input increases?

Potential answers:

I: Because more data always makes the system overdetermined.
II: Because slow or non-diverse input signals lead to poor numerical conditioning

of the matrix U.
III: Because increasing the number of samples reduces the noise-to-signal ratio.
IV: Because the model structure becomes nonlinear with large N.
V: I do not know
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Question 3

In the context of system identification, what does the condition number σmax(U)
σmin(U)

represent?

Potential answers:

I: The maximum amplification of relative errors in the data to the estimation
error.

II: The rate of convergence of the optimization algorithm used.
III: The ratio between input and output power in the system.
IV: The likelihood that a model is nonlinear.
V: I do not know
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Question 4

What is a practical way to reduce ill-conditioning in system identification?

Potential answers:

I: Use richer or faster-varying input signals during data collection.
II: Use fewer data points to simplify the estimation problem.

III: Reduce the noise artificially in the measurements after data collection.
IV: Make the input signal constant over time to ensure stability.
V: I do not know
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Question 5

Why is regularization used when solving ill-conditioned system identification problems?

Potential answers:

I: To make the inverse of U exactly equal to zero.
II: To stabilize the solution by penalizing large parameter values or enforcing

smoothness.
III: To reduce the condition number by artificially shrinking the data.
IV: To avoid computing the inverse of the matrix altogether.
V: I do not know
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Recap of sub-module “Ill conditioning”
• Ill-posed problems may lack a solution, have multiple solutions, or be highly

sensitive to small changes in data
• Ill-conditioned problems have a solution, but it is numerically unstable and highly

sensitive to input errors
• The condition number of a matrix quantifies the degree of ill-conditioning; a high

condition number indicates poor numerical stability
• In system identification, slowly varying or insufficiently rich input signals can lead

to ill-conditioning
• Regularization techniques can mitigate the effects of ill-conditioning by

introducing stability through additional constraints
• Choosing appropriate input signals is critical to ensuring well-posed and

well-conditioned identification problems
• Understanding the structure and properties of the data matrix (e.g., U in least

squares problems) is essential to diagnose ill-conditioning
- Ill conditioning 7



?

- Ill conditioning 8


	Ill conditioning

