Least squares estimators

Contents map

developed content units	taxonomy levels
least squares	u1, e1

prerequisite content units	taxonomy levels
dataset	u1, e1

Main ILO of sub-module "Least squares estimators"

Describe the concept of least squares in geometrical perspectives

Derive and use the normal equations for solving separable least squares problems

Basic assumptions

data generation model: $y_t = f(u_t; \theta) + v_t$

dataset: $\mathcal{D} = \left\{ \left(u_t, y_t \right) \right\}_{t=1,\dots,N}$

hypothesis space: $\theta \in \Theta$

Basic assumptions

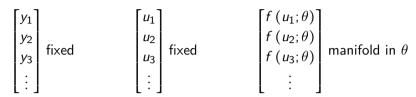
data generation model:
$$y_t = f(u_t; \theta) + v_t$$

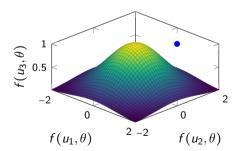
dataset:
$$\mathcal{D} = \left\{ \left(u_t, y_t \right) \right\}_{t=1,\dots,N}$$

hypothesis space: $\theta \in \Theta$

Problem: find a $\widehat{\theta} \in \Theta$ that "best explains" \mathcal{D}

Geometrical interpretation





example with $\theta \in \mathbb{R}^2$:

Question 1

Consider

$$\begin{bmatrix} f(u_1;\theta) \\ \vdots \\ f(u_N;\theta) \end{bmatrix}$$

varying u_1, \ldots, u_N but keeping θ fixed corresponds in general to find:

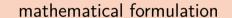
Potential answers:

I: a scalar

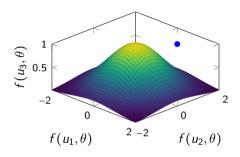
II: a vector

III: a manifold

IV: I do not know



Intuitions, towards a mathematical formulation



$$y_t = f(u_t; \theta) + v_t$$
 $\mathcal{D} = \{(u_t, y_t)\}_{t=1,...,N}$ $\theta \in \Theta$

$$y_{t} = f(u_{t}; \theta) + v_{t} \qquad \mathcal{D} = \{(u_{t}, y_{t})\}_{t=1,...,N} \qquad \theta \in \Theta$$

$$\widehat{\theta}_{LS} = \arg\min_{\theta \in \Theta} \left\| \begin{bmatrix} y_{1} \\ \vdots \\ y_{N} \end{bmatrix} - \begin{bmatrix} f(u_{1}; \theta) \\ \vdots \\ f(u_{N}; \theta) \end{bmatrix} \right\|^{2}$$

$$y_{t} = f(u_{t}; \theta) + v_{t} \qquad \mathcal{D} = \{(u_{t}, y_{t})\}_{t=1,...,N} \qquad \theta \in \Theta$$

$$\widehat{\theta}_{LS} = \arg\min_{\theta \in \Theta} \left\| \begin{bmatrix} y_{1} \\ \vdots \\ y_{N} \end{bmatrix} - \begin{bmatrix} f(u_{1}; \theta) \\ \vdots \\ f(u_{N}; \theta) \end{bmatrix} \right\|^{2} = \arg\min_{\theta \in \Theta} \sum_{t=1}^{N} (y_{t} - f(u_{t}; \theta))^{2}$$

$$y_{t} = f(u_{t}; \theta) + v_{t} \qquad \mathcal{D} = \{(u_{t}, y_{t})\}_{t=1,...,N} \qquad \theta \in \Theta$$

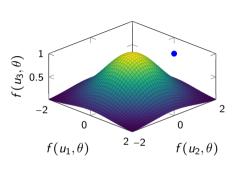
$$\widehat{\theta}_{LS} = \arg\min_{\theta \in \Theta} \left\| \begin{bmatrix} y_{1} \\ \vdots \\ y_{t} \end{bmatrix} - \begin{bmatrix} f(u_{1}; \theta) \\ \vdots \\ f(u_{t}; \theta) \end{bmatrix} \right\|^{2} = \arg\min_{\theta \in \Theta} \sum_{t=1}^{N} (y_{t} - f(u_{t}; \theta))^{2}$$

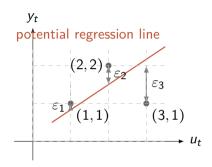
residual:
$$r_t(\theta) := y_t - f(u_t; \theta)$$

$$(\theta) := y_t - f(u_t; \theta)$$

- mathematical formulation 3

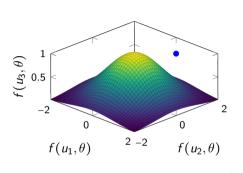
Example: regression line

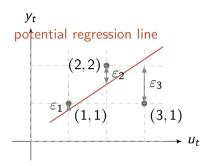




$$y_t = \theta_1 + \theta_2 u_t + v_t \qquad \mathcal{D} = \{(u_t, y_t)\}_{t=1}^3 = \{(1, 1), (2, 2), (3, 1)\} \qquad \theta \in \mathbb{R}^2$$

Example: regression line





$$y_t = \theta_1 + \theta_2 u_t + v_t$$

$$\mathcal{D} = \{(u_t, y_t)\}_{t=1}^3 = \{(1, 1), (2, 2), (3, 1)\}$$

$$\theta \in \mathbb{R}^2$$

$$\widehat{\theta}_{LS} = \left(\widehat{\theta}_{LS,1}, \widehat{\theta}_{LS,2}\right) = \arg\min_{\theta_1,\theta_2 \in \mathbb{R}} \left(\left(1 - \theta_1 - \theta_2\right)^2 + \left(2 - \theta_1 - 2\theta_2\right)^2 + \left(1 - \theta_1 - 3\theta_2\right)^2 \right)$$

Question 2

Consider

$$f(u;\theta) = \sum_{k=0}^{2} \theta_k u^k$$
 $\mathcal{D} = \{(0,0), (1,1)\}$ $\Theta = \mathbb{R}^2$.

How many solutions will the LS problem have?

Potential answers:

I: 0

II: 1

III: +∞

IV: I do not know

basic properties

Question 3

The concepts behind LS are simple, so it is simple to compute analytically $\widehat{\theta}_{\mathrm{LS}}$

Potential answers:

I: true

II: false

III: I do not know

Example: computing the LS may be numerically infeasible

$$\begin{aligned} u_t &\in \mathbb{R}^{10^6} \\ f\left(u_t; \theta\right) &\text{ extremely nonlinear } \\ \mathcal{D} &= \left\{ \left(u_t, y_t\right)_{t=1,\dots,N} \right\}, \ N = 10^{12} \\ \theta &\in \text{ very non-convex set} \end{aligned}$$

Question 4

The LS estimate $\widehat{\theta}_{\mathrm{LS}}$ always exists

Potential answers:

I: true

II: false

III: I do not know

Example: the LS estimate may not exist

$$\widehat{\theta}_{\mathrm{LS}} = \arg\min_{\theta \in (0,1)} \sum_{t=1}^{100} r_t^2(\theta)$$
 $r_t(\theta) = \frac{1}{\theta}$

Question 5

When it exists, the LS estimate $\widehat{\theta}_{\mathrm{LS}}$ is unique

Potential answers:

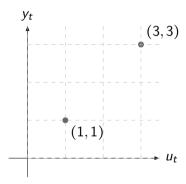
I: true

II: false

III: I do not know

Example: the LS estimate is not unique

How many quadratics fit perfectly this dataset?



linear least squares

If you don't remember how to do computations with matrices and vectors. . .

the matrix cookbook

$$y_t = \sum_{j=1}^n \theta_j \phi_j(u_t) + e_t$$

$$y_{t} = \sum_{j=1}^{n} \theta_{j} \phi_{j}(u_{t}) + e_{t}$$

$$\downarrow \downarrow$$

$$y_{t} = \left[\phi_{1}(u_{t}) \quad \cdots \quad \phi_{n}(u_{t})\right] \begin{bmatrix} \theta_{1} \\ \vdots \\ \theta_{n} \end{bmatrix} + e_{t}$$

$$y_{t} = \sum_{j=1}^{n} \theta_{j} \phi_{j}(u_{t}) + e_{t}$$

$$\downarrow \qquad \qquad \downarrow \qquad$$

$$y_{t} = \sum_{j=1}^{n} \theta_{j} \phi_{j}(u_{t}) + e_{t}$$

$$\downarrow \qquad \qquad \downarrow \qquad$$

$$\mathbf{y} = \Phi(\mathbf{u})\mathbf{\theta} + \mathbf{e}, \quad \mathbf{\theta} \in \mathbb{R}^n$$

$$\widehat{\theta}_{LS} = \arg\min_{\mathbf{\theta} \in \mathbb{R}^n} \|\mathbf{y} - \Phi(\mathbf{u})\mathbf{\theta}\|^2$$

$$\mathbf{y} = \Phi(\mathbf{u})\mathbf{\theta} + \mathbf{e}, \quad \mathbf{\theta} \in \mathbb{R}^n$$

$$\widehat{\theta}_{LS} = \arg\min_{\mathbf{\theta} \in \mathbb{R}^n} \|\mathbf{y} - \Phi(\mathbf{u})\mathbf{\theta}\|^2$$

Ideally, $\widehat{\theta}_{\mathrm{LS}}$ is s.t. $\Phi(\boldsymbol{u})\widehat{\theta}_{\mathrm{LS}} = \boldsymbol{y}!$

$$\mathbf{y} = \Phi(\mathbf{u})\mathbf{\theta} + \mathbf{e}, \quad \mathbf{\theta} \in \mathbb{R}^n$$

$$\widehat{\theta}_{LS} = \arg\min_{\mathbf{\theta} \in \mathbb{R}^n} \|\mathbf{y} - \Phi(\mathbf{u})\mathbf{\theta}\|^2$$

Ideally, $\widehat{\theta}_{LS}$ is s.t. $\Phi(\boldsymbol{u})\widehat{\theta}_{LS} = \boldsymbol{y}!$

normal equations:

$$\mathbf{y} = \Phi(\mathbf{u})\mathbf{\theta} + \mathbf{e}, \quad \mathbf{\theta} \in \mathbb{R}^n$$

$$\widehat{\theta}_{LS} = \arg\min_{\mathbf{\theta} \in \mathbb{R}^n} \|\mathbf{y} - \Phi(\mathbf{u})\mathbf{\theta}\|^2$$

Ideally,
$$\widehat{\theta}_{LS}$$
 is s.t. $\Phi(\boldsymbol{u})\widehat{\theta}_{LS} = \boldsymbol{y}!$

normal equations:
$$\Phi(\mathbf{u})^T \Phi(\mathbf{u}) \widehat{\theta}_{LS} = \Phi(\mathbf{u})^T \mathbf{y}$$

Exercise

Compute the solution of

$$\arg\min_{\theta\in\mathbb{R}^n} \Big(\mathbf{y} - \Phi(\mathbf{u}) \theta \Big)^T W \Big(\mathbf{y} - \Phi(\mathbf{u}) \theta \Big)$$

Question 6

Starting from

$$\Phi(\boldsymbol{u})^T \Phi(\boldsymbol{u}) \widehat{\theta}_{LS} = \Phi(\boldsymbol{u})^T \boldsymbol{y}$$

we can always set

$$\widehat{\theta}_{LS} = (\Phi(\boldsymbol{u})^T \Phi(\boldsymbol{u}))^{-1} \Phi(\boldsymbol{u})^T \boldsymbol{y}$$

Potential answers:

I: true

II: false

III: I do not know

Using the pseudoinverse when necessary

what if $\Phi(\mathbf{u})^T \Phi(\mathbf{u})$ does not have an inverse?

what if $\Phi(\mathbf{u})^T \Phi(\mathbf{u})$ does not have an inverse?

Definition (Moore-Penrose pseudoinverse of a matrix)

Given $A \in \mathbb{R}^{m \times n}$, A^{\dagger} is its pseudoinverse if

$$AA^{\dagger}A = A$$

$$A^{\dagger}AA^{\dagger} = A^{\dagger}$$

$$(AA^{\dagger})^{H} = AA^{\dagger}$$

$$(A^{\dagger}A)^{H} = A^{\dagger}A$$

what if $\Phi(\mathbf{u})^T \Phi(\mathbf{u})$ does not have an inverse?

Definition (Moore-Penrose pseudoinverse of a matrix)

Given $A \in \mathbb{R}^{m \times n}$, A^{\dagger} is its pseudoinverse if

$$AA^{\dagger}A = A$$

$$A^{\dagger}AA^{\dagger} = A^{\dagger}$$

$$(AA^{\dagger})^{H} = AA^{\dagger}$$

$$(A^{\dagger}A)^{H} = A^{\dagger}A$$

more in http://www.math.ucla.edu/~laub/33a.2.12s/mppseudoinverse.pdf

$$\mathbf{y} = \Phi(\mathbf{u})\mathbf{\theta} + \mathbf{e}, \quad \mathbf{\theta} \in \mathbb{R}^n$$

$$\widehat{\theta}_{LS} = \arg\min_{\mathbf{\theta} \in \mathbb{R}^n} \|\mathbf{y} - \Phi(\mathbf{u})\mathbf{\theta}\|^2$$

$$\Longrightarrow \qquad \widehat{\theta}_{LS} = \Phi(\mathbf{u})^{\dagger}\mathbf{y}$$

$$\mathbf{y} = \Phi(\mathbf{u})\mathbf{\theta} + \mathbf{e}, \quad \mathbf{\theta} \in \mathbb{R}^n$$

$$\widehat{\theta}_{LS} = \arg\min_{\mathbf{\theta} \in \mathbb{R}^n} \|\mathbf{y} - \Phi(\mathbf{u})\mathbf{\theta}\|^2$$

$$\Longrightarrow \qquad \widehat{\theta}_{LS} = \Phi(\mathbf{u})^{\dagger}\mathbf{y}$$

strong connections with singular values decompositions!

We can always solve the normal equations for every unconstrained separable LS problem

Potential answers:

I: true

II: false

III: I do not know

We can always solve the normal equations for every separable LS problem, even for constrained ones

Potential answers:

I: true

II: false

III: I do not know

LS for constrained separable problems \implies normal equations

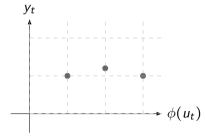
$$\mathbf{y} = \Phi(\mathbf{u})\mathbf{\theta} + \mathbf{e}, \quad \mathbf{\theta} \in \Theta$$
 $\widehat{\theta}_{LS} = \arg\min_{\mathbf{\theta} \in \Theta} \|\mathbf{y} - \Phi(\mathbf{u})\mathbf{\theta}\|^2$

LS for constrained separable problems \implies normal equations

$$\mathbf{y} = \Phi(\mathbf{u})\mathbf{\theta} + \mathbf{e}, \quad \mathbf{\theta} \in \Theta$$
 $\widehat{\theta}_{LS} = \arg\min_{\mathbf{\theta} \in \Theta} \|\mathbf{y} - \Phi(\mathbf{u})\mathbf{\theta}\|^2$

Ideally, looking for θ^* s.t. $\Phi(u)\theta^* - y = 0$, but it may happen that $\theta^* \notin \Theta$!

Example = fitting a convex quadratic here:



Summarizing

Describe the concept of least squares in geometrical perspectives

Derive and use the normal equations for solving separable least squares problems

- visualize the dataset in an opportune multidimensional plot
- if we have separability, we can use linear algebra to arrive at $X^T X \widehat{\theta} = Xy$

Most important python code for this sub-module

Illustrative example

```
https:
//scikit-learn.org/stable/auto_examples/linear_model/plot_ols.html
```

Self-assessment material

In the geometric interpretation of least squares, what does the vector y represent?

Potential answers:

I: The model parameters to be estimated

II: The fixed vector of measured output values

III: The manifold of all possible model predictions

IV: The noise affecting the measurements

What is the fundamental assumption required to derive the normal equations for least squares?

Potential answers:

I: The noise must be Gaussian distributed

II: The model must be nonlinear in parameters

III: The problem must be linear in parameters (separable)

IV: The hypothesis space must be constrained

When is the Moore-Penrose pseudoinverse required in least squares problems?

Potential answers:

I: When dealing with nonlinear models

II: When the measurements are noisy

III: When $\Phi^T \Phi$ is not invertible

IV: When the hypothesis space is constrained

What guarantees the existence of a unique least squares solution?

Potential answers:

I: Having more parameters than measurements

II: Φ having full column rank and unconstrained parameters

III: The hypothesis space being compact

IV: The noise being normally distributed

What is a key difference between constrained and unconstrained least squares problems?

Potential answers:

I: Constrained problems always have unique solutions

II: The normal equations may give solutions outside the constraint set

III: Only unconstrained problems can use the pseudoinverse

IV: Constrained problems require nonlinear optimization

Recap of sub-module "linear least squares"

- Least squares aims to minimize the squared residuals between model predictions and observed data
- The geometric interpretation views system identification as finding the closest point on a model manifold to measurement vectors
- Normal equations provide an analytical solution for unconstrained linear least squares problems through $\Phi^T \Phi \theta = \Phi^T y$
- The pseudoinverse generalizes solutions for rank-deficient systems and connects with singular value decomposition
- Existence and uniqueness of LS solutions depend on hypothesis space topology and model structure identifiability
- Constrained LS problems require different approaches than normal equations when parameters must satisfy domain restrictions