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Contents map

developed content units
least squares

taxonomy levels

ul, el

prerequisite content units

dataset

taxonomy levels

ul, el
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Main ILO of sub-module “Least squares estimators”

Describe the concept of least squares in geometrical perspectives

Derive and use the normal equations for

solving separable least squares problems

- Least squares estimators 3



Basic assumptions

data generation model: y; = f (ut;0) + vt

dataset: D={(ue,¥t) }ro1.. N

hypothesis space: eO
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Basic assumptions

data generation model: y; = f (ut;0) + vt

dataset: D={(ue,¥t) }ro1.. N

hypothesis space: eO

Problem: find a 8 € © that “best explains” D

- Least squares estimators 4



Geometrical interpretation

v uy f(uy;0)
2| . uwf f(u2;0) . i
fixed fixed f (us;0) manifold in 6

y3 u3

example with 0 € R?:

- Least squares estimators 5



Question 1

Consider
f(uy;0)
f(un;6)
varying ui,...,uy but keeping 0 fixed corresponds in general to find:

Potential answers:

I: a scalar

Il: a vector
I1l: a manifold
IV: | do not know

- Least squares estimators 6



mathematical formulation
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Intuitions, towards a mathematical formulation

SN
O
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Mathematical formulation

Ve =f(u;0) + vy DZ{(Ut;Yt)}tzl,...,N 00

- mathematical formulation 3



Mathematical formulation

ye=1f(u;0) + vy D= {(Ut;)’t)}t=1,...,N 00

Y
O« = i o :
LS afgglg : :
YN f(un;0)

[y

f(uy;0)
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Mathematical formulation

ye=f(ue0) +ve D={(ue.y)}eer.. fed
n f(uy;0) N ,

HLS:argglg . : :arggy@n;:;()/t—f(w?e)>
ynl  Lf (un; 0)
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Mathematical formulation

ye=f (ui6) + ve D= {(0ery)} s gco

n f(uy;0) N ,

QLS:arggyen e =3rgg1€ig;(yt—f(ut;0)>
ynl  Lf (un; 0)

residual: re(0) =y — f (ug; 0)
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Example: regression line

ye =01+ 0xu; + vy

Yt
po}ential regression line

D:{(Ut7Yt)}§:1:{(171)7(272)7(371)} 0 € R?
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Example: regression line

Yt
po}ential regression line

Ve =01 + Ooup + v D ={(ue,ye)boq = {(1,1),(2,2),(3,1)} 0 eR?

@\LS = (’Q\LS,h’e\LS,Q) = argeminR( (1 — (91 — 92)2 + (2 - 91 — 202)2 + (1 — 91 - 392)2 )

1,02€
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Question 2
Consider
2
f(u;0) = Ohu” D ={(0,0),(1,1)} 0 =R2
k=0

How many solutions will the LS problem have?

Potential answers:
I: 0
II: 1
I +o0
IV: | do not know
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basic properties
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Question 3

The concepts behind LS are simple, so it is simple to compute analytically O1s

Potential answers:

I: true
Il: false
Ill: 1 do not know
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Example:

computing the LS may be numerically infeasible

6
ut € Rlo
f (ut; 0) extremely nonlinear

D= {(utayt)tz]_’._'y/v}, N = 1012

0 € very non-convex set
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Question 4

The LS estimate Oy always exists

Potential answers:

I: true
Il: false
Ill: 1 do not know
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Example: the LS estimate may not exist

100

— 1
. 2
= m 9 = —
s argee(O'H) ;:1: ry (9) rt( ) 9
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Question 5

When it exists, the LS estimate Oy is unique

Potential answers:

I: true
Il: false
Ill: 1 do not know
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Example: the LS estimate is not unique

How many quadratics fit perfectly this dataset?

Yt
(3,3)

“(1,1)

U
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linear least squares
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If you don’t remember how to do computations with matrices and
vectors. ..

the matrix cookbook
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Separable problems

n
ve= . 0i0j(ue) + et
st
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Separable problems

Ye = 29j¢j(ut) + &t
j=1
I

61
Ye = [¢1(Ut) ¢n(ut)]|: ]‘*‘ €t
0n
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Separable problems

Ye = ieﬂbj(ut) + &t
=1
U
61
Ye = [¢1(Ut) ¢n(ut)] ]"‘ €t

I

[ﬂ] rl(ul) ¢n(u1)'[91} [61]
y.N ¢1(.UN) ¢n(.UN)_ én e.N




Separable problems

Ye = 29j¢j(ut) + &t
j=1

I
61
yt:[¢1(ut) ¢n(ut)] f]"‘et
[0
I
|:y1] |:¢)1(U1) ¢n(U1)- |:01] [61]
il Loy - ontomIlon] Lew
I

y=%(u)b+e



LS for wunconstrained separable problems == normal equations

y=®(u)f+e, OcR" Org :arggnIiRn ly - ®(u)6]?
€ n
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LS for wunconstrained separable problems == normal equations

y=®(u)f+e, OcR" Org :arggnIiRn ly - ®(u)6]?
€ n

Ideally, s is s.t. ®(u)fLs = y!
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LS for wunconstrained separable problems == normal equations

y=®(u)f+e, OcR" Org :arggnIiRn ly - ®(u)6]?
€ n

Ideally, Oyg is s.t. ®(u)fg = y!

normal equations:
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LS for wunconstrained separable problems == normal equations

y=®(u)f+e, OcR" Org :arggnIiRn ly - ®(u)6]?
€ n

Ideally, s is s.t. ®(u)fLs = y!

normal equations: ®(u) T ®(u)lrg = d(u) Ty
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Exercise

Compute the solution of

argggﬂig (y - <I>(u)0)TW(y - <I>(u)0)
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Question 6

Starting from
O(u) " (u)fs = d(u)Ty

we can always set )
Ous = (O(u) " O(u))  &(u)y

Potential answers:

I: true
Il: false
IIl: | do not know
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Using the pseudoinverse when necessary

what if ®(u)" ®(u) does not have an inverse?
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http://www.math.ucla.edu/~laub/33a.2.12s/mppseudoinverse.pdf

Using the pseudoinverse when necessary

what if ®(u)" ®(u) does not have an inverse?

Definition (Moore-Penrose pseudoinverse of a matrix)

Given Ae R™", Al is its pseudoinverse if
AATA = A
ATAAT = AT
(AAN)" = aaf
(ATA)" = ATA
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http://www.math.ucla.edu/~laub/33a.2.12s/mppseudoinverse.pdf

Using the pseudoinverse when necessary

what if ®(u)" ®(u) does not have an inverse?

Definition (Moore-Penrose pseudoinverse of a matrix)
Given Ae R™", Al is its pseudoinverse if
AATA = A
ATAAT = AT
(AAN)" = aaf
(ATA)" = ATA
)

more in http://www.math.ucla.edu/~laub/33a.2.12s/mppseudoinverse.pdf
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http://www.math.ucla.edu/~laub/33a.2.12s/mppseudoinverse.pdf

Using the pseudoinverse when necessary

y=®(u)f+e, 0¢cR" Ors =arg(r9n]£{n ly - d(u)8]?
€ n

— Ors = o(u)ly
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Using the pseudoinverse when necessary

y=®(u)f+e, 0¢cR" Ors =arg‘[,n]£{n ly - d(u)8]?
€ n

— Ors = o(u)ly

strong connections with singular values decompositions!
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Question 7

We can always solve the normal equations for every unconstrained separable LS
problem

Potential answers:

I: true
Il: false
Ill: 1 do not know
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Question 8

We can always solve the normal equations for every separable LS problem, even for

constrained ones

Potential answers:

I: true
Il: false
IIl: | do not know
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LS for constrained separable problems =~ normal equations

y=0(u)f+e, 0¢cO Ous = argmin |y — ®(u)|*
€
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LS for constrained separable problems =~ normal equations

y=®(u)f+e, 0cO @\Ls:arg?iQHY—Mu)OHz

Ideally, looking for 8 s.t. ®(u)0* —y =0, but it may happen that 8 ¢ ©!

Example = fitting a convex quadratic here:
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Summarizing

Describe the concept of least squares in geometrical perspectives

Derive and use the normal equations for

solving separable least squares problems

= visualize the dataset in an opportune multidimensional plot
= if we have separability, we can use linear algebra to arrive at XTX0 = Xy
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Most important python code for this sub-module
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lllustrative example

https:
//scikit-learn.org/stable/auto_examples/linear_model/plot_ols.html
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https://scikit-learn.org/stable/auto_examples/linear_model/plot_ols.html
https://scikit-learn.org/stable/auto_examples/linear_model/plot_ols.html

Self-assessment material
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Question 9

In the geometric interpretation of least squares, what does the vector y represent?
Potential answers:

I: The model parameters to be estimated

Il: The fixed vector of measured output values
I1l: The manifold of all possible model predictions
IV: The noise affecting the measurements
V: | do not know

- linear least squares 2



Question 10

What is the fundamental assumption required to derive the normal equations for least

squares?
Potential answers:

I: The noise must be Gaussian distributed
Il: The model must be nonlinear in parameters
[1l: The problem must be linear in parameters (separable)
IV: The hypothesis space must be constrained
V: | do not know
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Question 11

When is the Moore-Penrose pseudoinverse required in least squares problems?
Potential answers:

I: When dealing with nonlinear models
II: When the measurements are noisy
lIl: When &7 ® is not invertible
IV: When the hypothesis space is constrained
V: | do not know
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Question 12

What guarantees the existence of a unique least squares solution?
Potential answers:

I: Having more parameters than measurements
Il: ® having full column rank and unconstrained parameters
I1l: The hypothesis space being compact
IV: The noise being normally distributed
V: | do not know
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Question 13

What is a key difference between constrained and unconstrained least squares
problems?

Potential answers:

I: Constrained problems always have unique solutions
II: The normal equations may give solutions outside the constraint set
I1l: Only unconstrained problems can use the pseudoinverse
IV: Constrained problems require nonlinear optimization
V: | do not know
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Recap of sub-module “linear least squares”

= Least squares aims to minimize the squared residuals between model predictions
and observed data

= The geometric interpretation views system identification as finding the closest
point on a model manifold to measurement vectors

= Normal equations provide an analytical solution for unconstrained linear least
squares problems through dTdg = CDTy

= The pseudoinverse generalizes solutions for rank-deficient systems and connects
with singular value decomposition

= Existence and uniqueness of LS solutions depend on hypothesis space topology
and model structure identifiability

= Constrained LS problems require different approaches than normal equations when
parameters must satisfy domain restrictions

- linear least squares 7



- linear least squares 8



	Least squares estimators
	mathematical formulation
	basic properties
	linear least squares

