Introduction to System Identification

- Introduction to System Identification 1

Contents map

developed content units	taxonomy levels
system identification	u1, e1
parameter estimation	u1, e1
least squares	u1, e1

prerequisite content units	taxonomy levels
impulse response	u1, e1

Main ILO of sub-module "Introduction to System Identification"

describe the underlying concepts behind system identification

describe the role of system identification in model-based control

- Introduction to System Identification 3

What does "identifying a system" mean?

in a nutshell: to build mathematical models of a dynamic system from its input-output data

What does "identifying a system" mean?

in a nutshell: to build mathematical models of a dynamic system from its input-output data

Typical ingredients:

- measurements (inputs and outputs)
- model structure (e.g., impulse response).

Identification in this course

focus on estimating the coefficients that define the impulse response of causal FIR discrete-time LTI systems (likely less than 1% of what sysid encompasses)

More precisely

available dataset: $\mathcal{D} = \{y[k], u[k]\}_{k \in \mathcal{K}}$

assumed model:
$$y[k] = \sum_{i=0}^{n} h[i]u[k-i] + e[k]$$

with

- n to be estimated
- *h*[0], *h*[1], ..., *h*[*n*] to be estimated
- *e*[*k*] noise / modeling error with potentially unknown statistics

- Introduction to System Identification 6

Does identification matter for control?

Does identification matter for control?

... how can you do model-based control without a model?

Does identification matter for control?

... how can you do model-based control without a model? Caveats, though:

- end goal of this course = MPC
- bad model \implies bad model based controller
- bad dataset ⇒ bad model (filtering may help!)

Next modules

- least squares
- regularization

Summarizing

describe the underlying concepts behind system identification

describe the role of system identification in model-based control

- need a model structure
- need input-output data
- need an estimation algorithm

Most important python code for this sub-module

A very widely used library

https://scikit-learn.org/stable/

Self-assessment material

- Introduction to System Identification 1

Why do we need system identification before applying model-based control techniques like MPC?

- I: To make the system faster
- II: To reduce noise in sensors
- III: To estimate a model of the system from data
- IV: I do not know

What is the primary purpose of system identification in control engineering?

- I: To increase the processing speed of the control system
- II: To construct a mathematical model of a dynamic system using data
- III: To eliminate measurement noise entirely from sensors
- IV: To design the controller directly without requiring a model
- V: I do not know

Why is input-output data critical in system identification?

- I: To determine the physical dimensions of system components
- II: To estimate model parameters that best explain the observed behavior
- III: To validate the controller's performance in real-time
- IV: To replace the need for mathematical modeling entirely
- V: I do not know

What is a major risk of using a poorly identified model in Model Predictive Control (MPC)?

- I: The system's hardware may suffer physical damage
- II: The controller may perform inadequately due to inaccurate predictions
- III: Increased computational load during controller operation
- IV: The need for more frequent sensor calibrations
- V: I do not know

Which three elements are fundamentally required for system identification?

- I: Actuators, sensors, and a power supply
- II: Controller design, simulation software, and data storage
- III: Input-output data, estimation algorithm, and if available, model structure
- IV: Noise filters, feedback loops, and setpoints
- V: I do not know

Recap of sub-module "Introduction to System Identification"

- Model-based control requires accurate models
- System identification builds models from data
- There are several tools to estimate model parameters, in this course we only scratch the surface

- Introduction to System Identification 8

?