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Contents map

developed content units taxonomy levels
free evolution u1, e1
forced response u1, e1

prerequisite content units taxonomy levels
LTI RR u1, e1
convolution u1, e1
partial fraction decomposition u1, e1
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Main ILO of sub-module
“computing free evolutions and forced responses of LTI systems”

Compute free evolutions and forced responses of LTI systems us-
ing Z-transforms based formulas (but only as procedural tools)
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Disclaimer
the formulas introduced in this module shall be taken as “ex machina”
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Focus in this module = on ARMA models

y [n] = an−1y [n−1]
+ . . . + a0y + bmu[m] + . . . + b0u

with [i] meaning the i-th step ahead sample (e.g, y [3] = y+++). Discussion: why is the
LHS y [n] and not any [n]? Discussion: and which initial conditions shall we consider?
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Z transforms - links for who would like to get more info about them
Z transforms = discretization of Laplace transforms; interesting material:

• https://www.youtube.com/watch?v=XJRW6jamUHk
• https://www.youtube.com/watch?v=acQecd6dmxw
• https://www.youtube.com/watch?v=4PV6ikgBShw
• https://www.youtube.com/watch?v=7Gl4kJUjp4c
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Laplace transforms - links for who would like to get more info about them
Laplace transforms = extension of Fourier transforms; interesting material:

• https://www.youtube.com/watch?v=r6sGWTCMz2k (Fourier series)
• https://www.youtube.com/watch?v=spUNpyF58BY (Fourier transforms)
• https://www.youtube.com/watch?v=nmgFG7PUHfo (on the historical

importance of Fast Fourier Transforms)
• https://www.youtube.com/watch?v=7UvtU75NXTg (Laplace Transforms, in

math)
• https://www.youtube.com/watch?v=n2y7n6jw5d0 (Laplace Transforms,

graphically)
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Main usefulness: convolution in time transforms into multiplication in
Z-domain, and viceversa

{
H(z) = Z {h[k]}
U(z) = Z {u[k]}

Ô⇒ Z {h ∗ u[k]} = H(z)U(z)

Noticeable name: transfer function (= H(z) = Z {impulse response})
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An intuitive explanation of the usefulness of the Zeta transform in
automatic control

x + 0.3x− = 0, x[−1] = 2

initial value problem

x[k] = 2(−0.3)k

solution in the time domain

X(z) + 0.3z−1X(z) + x[−1] = 0

algebraic problem
Z

X(z) = 2/(1 + 0.3z−1
)

solution in the zeta domain

algebra

Z
−1
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First set of formulas to memorize: Zeta-transforming derivatives
(these will be motivated in other courses)

Z {x−} = z−1X(z) + x[−1]

Z {x−−} = z−2X(z) + x[−2] + z−1x[−1]

Z {x−−−} = z−3X(z) + x[−3] + z−1x[−2] + z−2x[−1]

Z {x [−m]
} = . . .
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Example: discretized spring mass system

y + α1y− + α2y−− + βu−−

⇓

Y (z) + (α1z−1Y (z) + α1y[−1]) + (α2z−2Y (z) + α2y[−2] + α2z−1y[−1]) = βz−2U(z)
⇓

Y (z) + α1z−1Y (z) + α2z−2Y (z) = α1y[−1] + α2y[−2] + α2z−1y[−1] + βz−2U(z)
⇓

Y (z) = α1y[−1] + α2y[−2] + α2z−1y[−1]
1 + α1z−1 + α2z−2 +

z−2β

1 + α1z−1 + α2z−2 U(z)
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And what shall we do once we get this?

generalizing the previous slide: Y (z) = M(z)
A(z)

+
B(z)
A(z)

U(z)

with

• M(z)
A(z)

= Zeta transform of the free evolution

• B(z)
A(z)

U(z) = Zeta transform of the forced response

Ô⇒ we shall anti-transform; how? Main 2 cases:

• either U(z) = polynomial in z
polynomial in z

• or U(z) = something else
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first case: rational U(z)
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How to do if U(z) = polynomial in z
polynomial in z

Y (z) = M(z)
A(z)

+
B(z)
A(z)

U(z) ↦ Y (z) = M(z)
A(z)

+
C(z)
D(z)

write each of the two parts of the signal as

N(z)
(z − λ1)(z − λ2)(z − λ3)⋯
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Next step: partial fraction decomposition
• case single poles: if N(z)

(z − λ1)(z − λ2)(z − λ3)⋯
is s.t. λ1 ≠ λ2 ≠ λ3 ≠ ⋯ then

there exist α1, α2, α3, . . . s.t.
N(z)

(z − λ1)(z − λ2)(z − λ3)⋯
=

α1z
z − λ1

+
α2z

z − λ2
+

α3z
z − λ3

+⋯ (1)

• case repeated poles: if some poles are repeated, then there exist α1,1, . . . ,
α1,n1, α2,1, . . . , α2,n2, . . . , s.t.

N(z)
(z − λ1)n1(z − λ2)n2⋯

=
α1,1(z)
z − λ1

+ . . . +
α1,n1(z)
(z − λ1)n1 +

α2,1(z)
z − λ2

+ . . . +
α2,n2(z)
(z − λ2)n2 + . . .

(2)

“But how do I compute α1, α2, etc.?” ↦
en.wikipedia.org/wiki/Partial_fraction_decomposition

(tip: start from en.wikipedia.org/wiki/Heaviside_cover-up_method)
- computing free evolutions and forced responses of LTI systems 3
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Anti-transforming in the rational U(z) and simple poles case

if Y (z) = α1z
z − λ1

+
α2z

z − λ2
+ . . . then use

Z {αλk} =
αz

z − λ
↔ Z

−1
{

αz
z − λ

} = αλk
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Anti-transforming in the rational U(z) case

if Y (z) =
α1,1z
z − λ1

+ . . . +
α1,n1(z)
(z − λ1)n1 +

α2,1z
z − λ2

+ . . . +
α2,n2(z)
(z − λ2)n2 + . . .

then use some software suite!
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Something though to remember

Z {kmλk}∝
⋆(z)

(z − λ)m+1
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Numerical Example: Inverse Zeta Transform of a Rational Function

Y (z) = 3z
z − 2

+
5z

z + 1
goal = compute the inverse Zeta transform y[k] = Z−1

{Y (z)}
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Step 1: Identify the terms

Y (z) = 3z
z − 2

+
5z

z + 1
Here:

• λ1 = 2, with coefficient α1,1 = 3
• λ2 = −1, with coefficient α2,1 = 5
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Step 2: Apply the inverse Zeta transform formula
by means of

Z
−1
{

z
(z − λ)

} = λk

we compute the inverse Zeta transform of each term:

• Z−1
{

3z
z − 2

} = 3 ⋅ 2k

• Z−1
{

5z
z + 1

} = 5 ⋅ (−1)k
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Step 3: Combine the results
then we have that the inverse Zeta transform y[k] is the sum of the individual
transforms, i.e.,

y[k] = 3 ⋅ 2k
+ 5 ⋅ (−1)k
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Another thing to remember: complex conjugate poles lead to sinusoidal
modes

Z {cos(ωk)} =
z(z − cos(ω))

z2 − 2z cos(ω) + 1
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Extremely important result

a LTI in free evolution behaves as a combination of
terms λk , kλk , k2λk , etc. for a set of different λ’s
and powers of k, called the modes of the system

Discussion: assuming that we have two modes, (0.3)k and (−0.9)k , so that

y[k] = α10.3k
+ α2(−0.9)k .

What determines α1 and α2?
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second case: irrational U(z)
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In this case we cannot use partial fractions decompositions as before

from Y (z) = M(z)
A(z)

+
B(z)
A(z)

U(z) we follow the algorithm

• find yfree[k] from PFDs of M(z)
A(z)

as before

• find the impulse response h[k] from PFDs of B(z)
A(z)

as before

• find yforced[k] as h ∗ u[k]
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Summarizing

Compute free evolutions and forced responses of LTI systems us-
ing Z-transforms based formulas (but only as procedural tools)

• Z-transform the DT ARMA
• if u[k] admits a rational U(z) then write Y (z) = polynomial

polynomial
, do PFD, and do

inverse-Zetas
• if u[k] does not admit a rational U(z), do similarly as before but do PFD only for

the free evolution and impulse response, and find the forced response by means of
convolution
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Most important python code for this sub-module
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Two essential libraries
• https://python-control.readthedocs.io/en/0.10.1/generated/

control.modal_form.html
• https://docs.sympy.org/latest/modules/physics/control/lti.html
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Self-assessment material
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Question 1

What is the primary purpose of using Z-transforms in the context of LTI systems?

Potential answers:

I: To convert convolution in the time domain into multiplication in the Z-
domain.

II: To derive the Laplace transform from the Fourier transform.
III: To compute the eigenvalues of the system matrix.
IV: To solve partial differential equations directly.
V: I do not know
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Question 2

In the ARMA model y [n] = an−1y [n−1]
+ . . . + a0y + bmu[m] + . . . + b0u, why is the

left-hand side y [n] and not any [n]?

Potential answers:

I: To work with monic polynomials, simplifying the analysis.
II: To ensure the system is always stable.

III: To make the system nonlinear.
IV: To reduce the number of initial conditions required.
V: I do not know
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Question 3

What is the purpose of partial fraction decomposition in the context of Z-transforms?

Potential answers:

I: To break down a complex rational function into simpler terms for inverse
Z-transform.

II: To compute the convolution of two signals directly.
III: To derive the Laplace transform from the Z-transform.
IV: To solve nonlinear differential equations.
V: I do not know
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Question 4

What are the modes of a LTI system in free evolution?

Potential answers:

I: Combinations of terms like λk , kλk , k2λk , etc.
II: The eigenvalues of the system matrix.

III: The coefficients of the ARMA model.
IV: The initial conditions of the system.
V: I do not know
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Question 5

How is the forced response of a LTI system computed when U(z) is not rational?

Potential answers:

I: By computing the convolution of the impulse response h[k] with the input
u[k].

II: By using partial fraction decomposition on U(z).
III: By directly inverting the Z-transform of U(z).
IV: By solving the system’s differential equations numerically.
V: I do not know
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Recap of sub-module
“computing free evolutions and forced responses of LTI systems”

• finding such signals require knowing a couple of formulas by heart
• partial fraction decomposition is king here, one needs to know how to do that
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