computing free evolutions and forced responses of LTI systems

Contents map

developed content units	taxonomy levels
free evolution	u1, e1
forced response	u1, e1

prerequisite content units	taxonomy levels
LTI RR	u1, e1
convolution	u1, e1
partial fraction decomposition	u1, e1

Main ILO of sub-module

"computing free evolutions and forced responses of LTI systems"

Compute free evolutions and forced responses of LTI systems using Z-transforms based formulas (but only as procedural tools)

Disclaimer

the formulas introduced in this module shall be taken as "ex machina"

Focus in this module = on ARMA models

$$y^{[n]} = a_{n-1}y^{[n-1]} + \ldots + a_0y + b_mu^{[m]} + \ldots + b_0u$$

with ^[i] meaning the *i*-th step ahead sample (e.g, $y^{[3]} = y^{+++}$).

Focus in this module = on ARMA models

$$y^{[n]} = a_{n-1}y^{[n-1]} + \ldots + a_0y + b_mu^{[m]} + \ldots + b_0u$$

with ^[i] meaning the *i*-th step ahead sample (e.g, $y^{[3]} = y^{+++}$). *Discussion:* why is the LHS $y^{[n]}$ and not $a_n y^{[n]}$?

Focus in this module = on ARMA models

$$y^{[n]} = a_{n-1}y^{[n-1]} + \ldots + a_0y + b_mu^{[m]} + \ldots + b_0u$$

with ^[i] meaning the *i*-th step ahead sample (e.g, $y^{[3]} = y^{+++}$). *Discussion:* why is the LHS $y^{[n]}$ and not $a_n y^{[n]}$? *Discussion:* and which initial conditions shall we consider?

Z transforms - links for who would like to get more info about them

Z transforms = discretization of Laplace transforms; interesting material:

- https://www.youtube.com/watch?v=XJRW6jamUHk
- https://www.youtube.com/watch?v=acQecd6dmxw
- https://www.youtube.com/watch?v=4PV6ikgBShw
- https://www.youtube.com/watch?v=7Gl4kJUjp4c

Laplace transforms - links for who would like to get more info about them

Laplace transforms = extension of Fourier transforms; interesting material:

- https://www.youtube.com/watch?v=r6sGWTCMz2k (Fourier series)
- https://www.youtube.com/watch?v=spUNpyF58BY (Fourier transforms)
- https://www.youtube.com/watch?v=nmgFG7PUHfo (on the historical importance of Fast Fourier Transforms)
- https://www.youtube.com/watch?v=7UvtU75NXTg (Laplace Transforms, in math)
- https://www.youtube.com/watch?v=n2y7n6jw5d0 (Laplace Transforms, graphically)

Main usefulness: convolution in time transforms into multiplication in Z-domain, and viceversa

$$\begin{cases} H(z) = \mathcal{Z} \{h[k]\} \\ U(z) = \mathcal{Z} \{u[k]\} \end{cases} \implies \mathcal{Z} \{h * u[k]\} = H(z)U(z) \end{cases}$$

Main usefulness: convolution in time transforms into multiplication in Z-domain, and viceversa

$$\begin{cases} H(z) = \mathcal{Z} \{h[k]\} \\ U(z) = \mathcal{Z} \{u[k]\} \end{cases} \implies \mathcal{Z} \{h * u[k]\} = H(z)U(z)$$

Noticeable name: *transfer function* (= $H(z) = \mathcal{Z}$ {impulse response})

initial value problem

$$x + 0.3x^{-} = 0, \quad x[-1] = 2$$

initial value problem

$$x + 0.3x^{-} = 0, \quad x[-1] = 2$$

solution in the time domain

- computing free evolutions and forced responses of LTI systems 9

initial value problem

algebraic problem

solution in the time domain

⁻ computing free evolutions and forced responses of LTI systems 9

initial value problem

algebraic problem

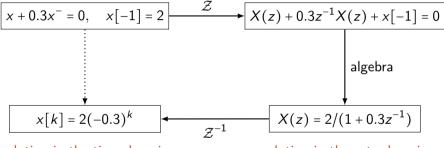
$$\begin{array}{c} x + 0.3x^{-} = 0, \quad x[-1] = 2 \\ \hline \\ x + 0.3x^{-} = 0, \quad x[-1] = 2 \\ \hline \\ x[k] = 2(-0.3)^{k} \\ \hline \\ x[k] = 2(-0.3)^{k} \\ \hline \\ x[k] = 2/(1+0.3z^{-1}) \\ \hline \\ x[k$$

solution in the time domain

solution in the zeta domain

initial value problem

algebraic problem



solution in the time domain

solution in the zeta domain

$$\mathcal{Z}\left\{x^{-}\right\} = z^{-1}X(z) + x\left[-1\right]$$

$$\mathcal{Z}\left\{x^{-}\right\} = z^{-1}X(z) + x\left[-1\right]$$

$$\mathcal{Z}\{x^{--}\} = z^{-2}X(z) + x[-2] + z^{-1}x[-1]$$

$$\mathcal{Z}\left\{x^{-}\right\} = z^{-1}X(z) + x\left[-1\right]$$

$$\mathcal{Z}\{x^{--}\} = z^{-2}X(z) + x[-2] + z^{-1}x[-1]$$

$$\mathcal{Z}\{x^{---}\} = z^{-3}X(z) + x[-3] + z^{-1}x[-2] + z^{-2}x[-1]$$

 \mathcal{Z}

$$\mathcal{Z} \{x^{-}\} = z^{-1}X(z) + x[-1]$$
$$\mathcal{Z} \{x^{--}\} = z^{-2}X(z) + x[-2] + z^{-1}x[-1]$$
$$\{x^{---}\} = z^{-3}X(z) + x[-3] + z^{-1}x[-2] + z^{-2}x[-1]$$

$$\mathcal{Z}\left\{x^{\lfloor -m\rfloor}\right\}=\ldots$$

Example: discretized spring mass system

$$y + \alpha_{1}y^{-} + \alpha_{2}y^{--} + \beta u^{--}$$

$$\downarrow$$

$$Y(z) + (\alpha_{1}z^{-1}Y(z) + \alpha_{1}y[-1]) + (\alpha_{2}z^{-2}Y(z) + \alpha_{2}y[-2] + \alpha_{2}z^{-1}y[-1]) = \beta z^{-2}U(z)$$

$$\downarrow$$

$$Y(z) + \alpha_{1}z^{-1}Y(z) + \alpha_{2}z^{-2}Y(z) = \alpha_{1}y[-1] + \alpha_{2}y[-2] + \alpha_{2}z^{-1}y[-1] + \beta z^{-2}U(z)$$

$$\downarrow$$

$$Y(z) = \frac{\alpha_{1}y[-1] + \alpha_{2}y[-2] + \alpha_{2}z^{-1}y[-1]}{1 + \alpha_{1}z^{-1} + \alpha_{2}z^{-2}} + \frac{z^{-2}\beta}{1 + \alpha_{1}z^{-1} + \alpha_{2}z^{-2}}U(z)$$

And what shall we do once we get this?

generalizing the previous slide:
$$Y(z) = \frac{M(z)}{A(z)} + \frac{B(z)}{A(z)}U(z)$$

with

- $\frac{M(z)}{A(z)}$ = Zeta transform of the free evolution
- $\frac{B(z)}{A(z)}U(z)$ = Zeta transform of the forced response
- \implies we shall anti-transform; how?

⁻ computing free evolutions and forced responses of LTI systems 12

And what shall we do once we get this?

generalizing the previous slide:
$$Y(z) = \frac{M(z)}{A(z)} + \frac{B(z)}{A(z)}U(z)$$

with

- $\frac{M(z)}{A(z)}$ = Zeta transform of the free evolution
- $\frac{B(z)}{A(z)}U(z)$ = Zeta transform of the forced response
- \implies we shall anti-transform; how? Main 2 cases:
 - either $U(z) = \frac{\text{polynomial in } z}{\text{polynomial in } z}$
 - or U(z) = something else

first case: rational U(z)

How to do if $U(z) = \frac{\text{polynomial in } z}{\text{polynomial in } z}$

$$Y(z) = \frac{M(z)}{A(z)} + \frac{B(z)}{A(z)}U(z) \quad \mapsto \quad Y(z) = \frac{M(z)}{A(z)} + \frac{C(z)}{D(z)}$$

How to do if $U(z) = \frac{\text{polynomial in } z}{\text{polynomial in } z}$

$$Y(z) = \frac{M(z)}{A(z)} + \frac{B(z)}{A(z)}U(z) \quad \mapsto \quad Y(z) = \frac{M(z)}{A(z)} + \frac{C(z)}{D(z)}$$

write each of the two parts of the signal as

$$\frac{N(z)}{(z-\lambda_1)(z-\lambda_2)(z-\lambda_3)\cdots}$$

Next step: partial fraction decomposition

• case single poles: if $\frac{N(z)}{(z-\lambda_1)(z-\lambda_2)(z-\lambda_3)\cdots}$ is s.t. $\lambda_1 \neq \lambda_2 \neq \lambda_3 \neq \cdots$ then there exist $\alpha_1, \alpha_2, \alpha_3, \ldots$ s.t.

$$\frac{N(z)}{(z-\lambda_1)(z-\lambda_2)(z-\lambda_3)\cdots} = \frac{\alpha_1 z}{z-\lambda_1} + \frac{\alpha_2 z}{z-\lambda_2} + \frac{\alpha_3 z}{z-\lambda_3} + \cdots$$
(1)

Next step: partial fraction decomposition

• case single poles: if $\frac{N(z)}{(z-\lambda_1)(z-\lambda_2)(z-\lambda_3)\cdots}$ is s.t. $\lambda_1 \neq \lambda_2 \neq \lambda_3 \neq \cdots$ then there exist $\alpha_1, \alpha_2, \alpha_3, \ldots$ s.t.

$$\frac{N(z)}{(z-\lambda_1)(z-\lambda_2)(z-\lambda_3)\cdots} = \frac{\alpha_1 z}{z-\lambda_1} + \frac{\alpha_2 z}{z-\lambda_2} + \frac{\alpha_3 z}{z-\lambda_3} + \cdots$$
(1)

- case repeated poles: if some poles are repeated, then there exist $\alpha_{1,1}, \ldots$,

$$\frac{\alpha_{1,n1}, \alpha_{2,1}, \dots, \alpha_{2,n2}, \dots, \text{ s.t.}}{(z-\lambda_1)^{n1}(z-\lambda_2)^{n2}\dots} = \frac{\alpha_{1,1}(z)}{z-\lambda_1} + \dots + \frac{\alpha_{1,n1}(z)}{(z-\lambda_1)^{n1}} + \frac{\alpha_{2,1}(z)}{z-\lambda_2} + \dots + \frac{\alpha_{2,n2}(z)}{(z-\lambda_2)^{n2}} + \dots$$
(2)

Next step: partial fraction decomposition

• case single poles: if $\frac{N(z)}{(z-\lambda_1)(z-\lambda_2)(z-\lambda_3)\cdots}$ is s.t. $\lambda_1 \neq \lambda_2 \neq \lambda_3 \neq \cdots$ then there exist $\alpha_1, \alpha_2, \alpha_3, \ldots$ s.t.

$$\frac{N(z)}{(z-\lambda_1)(z-\lambda_2)(z-\lambda_3)\cdots} = \frac{\alpha_1 z}{z-\lambda_1} + \frac{\alpha_2 z}{z-\lambda_2} + \frac{\alpha_3 z}{z-\lambda_3} + \cdots$$
(1)

- case repeated poles: if some poles are repeated, then there exist $\alpha_{1,1}, \ldots$,

$$\frac{\alpha_{1,n1}, \alpha_{2,1}, \dots, \alpha_{2,n2}, \dots, \text{ s.t.}}{(z-\lambda_1)^{n1}(z-\lambda_2)^{n2}\dots} = \frac{\alpha_{1,1}(z)}{z-\lambda_1} + \dots + \frac{\alpha_{1,n1}(z)}{(z-\lambda_1)^{n1}} + \frac{\alpha_{2,1}(z)}{z-\lambda_2} + \dots + \frac{\alpha_{2,n2}(z)}{(z-\lambda_2)^{n2}} + \dots$$
(2)

 Anti-transforming in the rational U(z) and simple poles case

if
$$Y(z) = \frac{\alpha_1 z}{z - \lambda_1} + \frac{\alpha_2 z}{z - \lambda_2} + \dots$$
 then use
$$\mathcal{Z} \{ \alpha \lambda^k \} = \frac{\alpha z}{z - \lambda} \quad \leftrightarrow \quad \mathcal{Z}^{-1} \{ \frac{\alpha z}{z - \lambda} \} = \alpha \lambda^k$$

Anti-transforming in the rational U(z) case

if
$$Y(z) = \frac{\alpha_{1,1}z}{z - \lambda_1} + \ldots + \frac{\alpha_{1,n1}(z)}{(z - \lambda_1)^{n1}} + \frac{\alpha_{2,1}z}{z - \lambda_2} + \ldots + \frac{\alpha_{2,n2}(z)}{(z - \lambda_2)^{n2}} + \ldots$$

then use some software suite!

Something though to remember

$$\mathcal{Z}\left\{k^m\lambda^k
ight\} \propto rac{\star(z)}{(z-\lambda)^{m+1}}$$

Numerical Example: Inverse Zeta Transform of a Rational Function

$$Y(z) = \frac{3z}{z-2} + \frac{5z}{z+1}$$

goal = compute the inverse Zeta transform $y[k] = Z^{-1} \{Y(z)\}$

Step 1: Identify the terms

$$Y(z) = \frac{3z}{z-2} + \frac{5z}{z+1}$$

Here:

- $\lambda_1 = 2$, with coefficient $\alpha_{1,1} = 3$
- $\lambda_2 = -1$, with coefficient $\alpha_{2,1} = 5$

Step 2: Apply the inverse Zeta transform formula

by means of

$$\mathcal{Z}^{-1}\left\{\frac{z}{(z-\lambda)}\right\} = \lambda^k$$

we compute the inverse Zeta transform of each term:

•
$$\mathcal{Z}^{-1}\left\{\frac{3z}{z-2}\right\} = 3 \cdot 2^k$$

• $\mathcal{Z}^{-1}\left\{\frac{5z}{z+1}\right\} = 5 \cdot (-1)^k$

Step 3: Combine the results

then we have that the inverse Zeta transform y[k] is the sum of the individual transforms, i.e.,

$$y[k] = 3 \cdot 2^k + 5 \cdot (-1)^k$$

Another thing to remember: complex conjugate poles lead to sinusoidal modes

$$\mathcal{Z}\left\{\cos(\omega k)\right\} = \frac{z(z-\cos(\omega))}{z^2-2z\cos(\omega)+1}$$

Extremely important result

a LTI in free evolution behaves as a combination of terms λ^k , $k\lambda^k$, $k^2\lambda^k$, etc. for a set of different λ 's and powers of k, called the *modes* of the system

Extremely important result

a LTI in free evolution behaves as a combination of terms λ^k , $k\lambda^k$, $k^2\lambda^k$, etc. for a set of different λ 's and powers of k, called the *modes* of the system

Discussion: assuming that we have two modes, $(0.3)^k$ and $(-0.9)^k$, so that

$$y[k] = \alpha_1 0.3^k + \alpha_2 (-0.9)^k.$$

What determines α_1 and α_2 ?

⁻ computing free evolutions and forced responses of LTI systems 12

second case: irrational U(z)

In this case we cannot use partial fractions decompositions as before

from
$$Y(z) = \frac{M(z)}{A(z)} + \frac{B(z)}{A(z)}U(z)$$
 we follow the algorithm

• find
$$y_{\text{free}}[k]$$
 from PFDs of $\frac{M(z)}{A(z)}$ as before

- find the impulse response h[k] from PFDs of $\frac{B(z)}{A(z)}$ as before
- find $y_{\text{forced}}[k]$ as h * u[k]

Summarizing

Compute free evolutions and forced responses of LTI systems using Z-transforms based formulas (but only as procedural tools)

- Z-transform the DT ARMA
- if u[k] admits a rational U(z) then write $Y(z) = \frac{\text{polynomial}}{\text{polynomial}}$, do PFD, and do inverse-Zetas
- if u[k] does not admit a rational U(z), do similarly as before but do PFD only for the free evolution and impulse response, and find the forced response by means of convolution

Most important python code for this sub-module

Two essential libraries

- https://python-control.readthedocs.io/en/0.10.1/generated/ control.modal_form.html
- https://docs.sympy.org/latest/modules/physics/control/lti.html

Self-assessment material

- computing free evolutions and forced responses of LTI systems $\boldsymbol{1}$

What is the primary purpose of using Z-transforms in the context of LTI systems?

- I: To convert convolution in the time domain into multiplication in the Z-domain.
- II: To derive the Laplace transform from the Fourier transform.
- III: To compute the eigenvalues of the system matrix.
- IV: To solve partial differential equations directly.
- V: I do not know

In the ARMA model $y^{[n]} = a_{n-1}y^{[n-1]} + \ldots + a_0y + b_mu^{[m]} + \ldots + b_0u$, why is the left-hand side $y^{[n]}$ and not $a_ny^{[n]}$?

- I: To work with monic polynomials, simplifying the analysis.
- II: To ensure the system is always stable.
- III: To make the system nonlinear.
- IV: To reduce the number of initial conditions required.
- V: I do not know

What is the purpose of partial fraction decomposition in the context of Z-transforms?

- I: To break down a complex rational function into simpler terms for inverse Z-transform.
- II: To compute the convolution of two signals directly.
- III: To derive the Laplace transform from the Z-transform.
- IV: To solve nonlinear differential equations.
- V: I do not know

What are the modes of a LTI system in free evolution?

- I: Combinations of terms like λ^k , $k\lambda^k$, $k^2\lambda^k$, etc.
- II: The eigenvalues of the system matrix.
- III: The coefficients of the ARMA model.
- IV: The initial conditions of the system.
- V: I do not know

How is the forced response of a LTI system computed when U(z) is not rational?

- I: By computing the convolution of the impulse response h[k] with the input u[k].
- II: By using partial fraction decomposition on U(z).
- III: By directly inverting the Z-transform of U(z).
- IV: By solving the system's differential equations numerically.
- V: I do not know

Recap of sub-module

- finding such signals require knowing a couple of formulas by heart
- partial fraction decomposition is king here, one needs to know how to do that

- computing free evolutions and forced responses of LTI systems 8

?