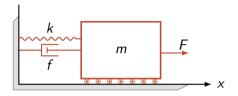
what is an impulse response

Contents map

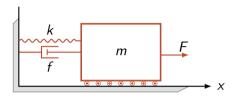
developed content units	taxonomy levels
Dirac delta	u1, e1
impulse response	u1, e1

prerequisite content units	taxonomy levels
superposition principle	u1, e1
Euler backwards discretization	u1, e1
LTI RR	u1, e1


Main ILO of sub-module "what is an impulse response"

Describe what the impulse response of an LTI system is in practice

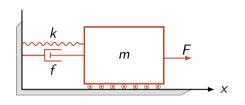
Impulse response ↔ superposition principle ↔ LTI system

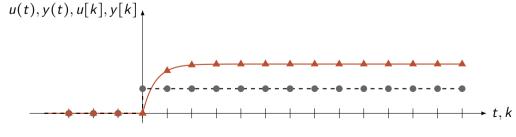

talking about the impulse response of a nonlinear system is such a big mistake that may make you fail the exam on the spot

Practical example: spring-mass system

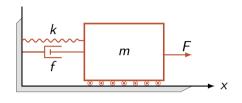
- output = position
- input = force (in Newtons)

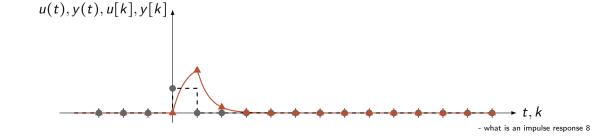
Discretizing the spring-mass system with a Euler backwards scheme

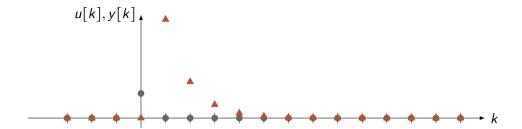



Newton
$$\Rightarrow \ddot{y}(t) + a_1\dot{y}(t) + a_0y(t) = b_0u(t)$$

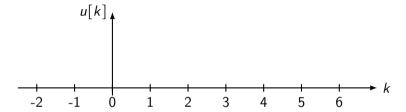
becomes, with Euler,


$$y^{++} + \alpha_1 y^+ + \alpha_0 y = \beta u$$


What does it mean to apply a control signal u[k] = step?

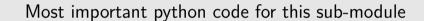


And u[k] = 1 only for k = 0, and 0 otherwise? (i.e., $u[k] = \delta[k]$)



The impulse response for DT LTI systems

Discussion


Where would you draw $\delta[k-4]$?

Summarizing

Describe what the impulse response of an LTI system is in practice

• an opportune behavior of the response of a LTI system to a discrete Dirac's delta

Important libraries / methods

- https://docs.scipy.org/doc/scipy/reference/generated/scipy. signal.impulse.html
- https://python-control.readthedocs.io/en/latest/generated/ control.impulse_response.html

What is the impulse response of an LTI system?

Potential answers:

I: The output of the system when the input is a discrete Dirac's delta.

II: The output of the system when the input is a step function.

III: The output of the system when the input is a sinusoidal signal.

IV: The output of the system when the input is a random signal.

Why is the impulse response meaningful only for LTI systems?

Potential answers:

I: Because nonlinear systems do not have outputs.

II: Because the impulse response relies on the superposition principle, which is valid only for LTI systems.

III: Because the impulse response is only defined for continuous-time systems.

IV: Because the impulse response is too complex for nonlinear systems.

What happens to the impulse response of a discrete-time LTI system if the input is $\delta[k-4]$?

Potential answers:

I: The impulse response becomes zero.

II: The impulse response is shifted by 4 time units.

III: The impulse response is scaled by a factor of 4.

IV: The impulse response becomes nonlinear.

What is the practical significance of the impulse response in analyzing LTI systems?

Potential answers:

I: It allows us to ignore the system's initial conditions.

II: It characterizes the system's behavior and can be used to determine the output for any input.

III: It ensures the system response is always sinusoidal.

IV: It makes the system response independent of the input.

In the context of a spring-mass-damper system, what does the impulse response represent?

Potential answers:

- I: The steady-state position of the mass.
- II: The displacement of the mass over time after an instantaneous force is applied.
- III: The force required to keep the mass at rest.
- IV: The frequency of oscillation of the mass.
- V: I do not know

Recap of sub-module "what is an impulse response"

- impulse responses are directly connected to step responses
- actually this connection is valid only if the system is LTI