what is the superposition principle, and what does it imply

Contents map

developed content units	taxonomy levels
superposition principle	u1, e1
prerequisite content units	taxonomy levels
LTI RR	u1, e1

Main ILO of sub-module

"what is the superposition principle, and what does it imply"

Describe the importance of the superposition principle to analyze LTI systems

Starting with graphs

implications/definition of linearity:

- f(x+y) = f(x) + f(y)
- $f(\alpha y) = \alpha f(y)$

- what is the superposition principle, and what does it imply 4

What if we interpret this as a RR?

 \implies an LTI system, for which

$$y^+ = \alpha y$$
 is solved by $y[k] = y[0]\alpha^k \quad \forall y[0], \alpha, k$

 \implies an LTI system, for which

• $y'[0] = 2 \mapsto y'[k] = 2\alpha^k$

⁻ what is the superposition principle, and what does it imply 6

 \implies an LTI system, for which

- $y'[0] = 2 \mapsto y'[k] = 2\alpha^k$
- $y''[0] = 3 \mapsto y''[k] = 3\alpha^k$

- what is the superposition principle, and what does it imply 6

 \implies an LTI system, for which

- $y'[0] = 2 \mapsto y'[k] = 2\alpha^k$
- $y''[0] = 3 \mapsto y''[k] = 3\alpha^k$
- $y'''[0] = 3 + 2 \mapsto y'''[k] = (3 + 2)\alpha^k$

 \implies an LTI system, for which

- $y'[0] = 2 \mapsto y'[k] = 2\alpha^k$
- $y''[0] = 3 \mapsto y''[k] = 3\alpha^k$
- $y'''[0] = 3 + 2 \mapsto y'''[k] = (3 + 2)\alpha^k$

 $v'[0] + v''[0] \mapsto v'[k] + v''[k]$ the superposition principle, and what does it imply 6

Further generalization

• $\{y'[0], u'\} \mapsto y'[k]$

•
$$\{y''[0], u''\} \mapsto y''[k]$$

• $\{y'[0] + y''[0], u' + u''\} \mapsto y'[k] + y''[k]$

Aiding intuitions with math

Linearity implies that if $\{y', u', y'[0]\}$ and $\{y'', u'', y''[0]\}$ satisfy

$$\begin{cases} y'[k+1] = ay'[k] + bu'[k] \\ y'[0] = y'_{0} \\ y''[k+1] = ay''[k] + bu''[k] \\ y''[0] = y''_{0} \end{cases}$$
(1)

then their sum also satisfies

$$\begin{pmatrix} \alpha' y'[k+1] + \alpha'' y''[k+1] \end{pmatrix} = a(\alpha' y'[k] + \alpha'' y''[k]) + b(\alpha' u'[k] + \alpha'' u''[k]) \\ \alpha' y'[0] + \alpha'' y''[0] = \alpha' y'_0 + \alpha'' y''_0$$

$$(2)$$

Rephrasing

Linearity implies that if $\{y', u', y'[0]\}$ and $\{y'', u'', y''[0]\}$ satisfy the RR then also their sum $\{y' + y'', u' + u'', y'[0] + y''[0]\}$ satisfies the RR.

Rephrasing

Linearity implies that if $\{y', u', y'[0]\}$ and $\{y'', u'', y''[0]\}$ satisfy the RR then also their sum $\{y' + y'', u' + u'', y'[0] + y''[0]\}$ satisfies the RR.

The superposition principle in words

in LTI systems combining inputs and initial conditions produces a total effect that is the linear combination of that effects one would get with the individual causes each acting separately Important: the superposition principle works with any LTI Will be repeated and stated again precisely later on

the proof holds for every system that generalizes $y^+ = ay + bu$, i.e., every "linear combination of temporal shifts of y = linear combination of temporal shifts of u" Superposition principle \implies

response of LTIs = free evolution + forced response

assume:

assume:

•
$$y^+ = ay + bu$$

•
$$\{u[k] = 0[k], y[0] \neq 0\}$$
 causes $y_{\text{free evolution}}[k]$

.

assume:

- $y^+ = ay + bu$
- $\{u[k] = 0[k], y[0] \neq 0\}$ causes $y_{\text{free evolution}}[k]$
- $\{u[k] \neq 0[k], y[0] = 0\}$ causes $y_{\text{forced response}}[k]$

assume:

A mnemonic scheme

(only for LTI systems!!)

$$(u, y_0) = (0, y_0) + (u, 0)$$

total response = free evolution + forced response

Discussion: how will the cart move if I use $u[k] = sin(\omega kT)$ starting from a resting state? (only intuitively, assuming everything ideal)

⁻ what is the superposition principle, and what does it imply 13

Discussion: how will the cart move if I use $u[k] = \sin(\omega kT)$ starting from a resting state? (only intuitively, assuming everything ideal) And what about if $u[k] = 2\sin(\omega kT)$?

⁻ what is the superposition principle, and what does it imply 13

Discussion: how will the cart move if I use $u[k] = \sin(\omega kT)$ starting from a resting state? (only intuitively, assuming everything ideal) And what about if $u[k] = 2\sin(\omega kT)$? And what about $u[k] = \sin(\omega' kT) + \sin(\omega'' kT)$?

⁻ what is the superposition principle, and what does it imply 13

Discussion: how will the cart move if I use $u[k] = \sin(\omega kT)$ starting from a resting state? (only intuitively, assuming everything ideal) And what about if $u[k] = 2\sin(\omega kT)$? And what about $u[k] = \sin(\omega' kT) + \sin(\omega'' kT)$? And what about $u[k] = \alpha' \sin(\omega' kT) + \alpha'' \sin(\omega'' kT)$?

⁻ what is the superposition principle, and what does it imply 13

Summarizing

Describe the importance of the superposition principle to analyze LTI systems

• it makes us able to say "total = free + forced"

Most important python code for this sub-module

Suggestion

part of the SciPy library (scipy.signal) provides tools for working with LTI systems, including creating transfer functions, state-space representations, and analyzing system responses (stuff that will be seen in the next modules)

Self-assessment material

- what is the superposition principle, and what does it imply $\boldsymbol{1}$

What is the primary implication of the superposition principle in LTI systems?

- I: The total response is the sum of the free evolution and the forced response.
- II: The system response is always exponential.
- III: The system response is independent of the initial conditions.
- IV: The system response is nonlinear.
- V: I do not know

Which of the following properties is essential for a system to be considered linear?

- I: The system response is always sinusoidal.
- II: The system satisfies the properties f(x+y) = f(x)+f(y) and $f(\alpha y) = \alpha f(y)$.
- III: The system response is independent of the input.
- IV: The system response is always zero for zero input.
- V: I do not know

What happens to the response of an LTI system if the input is scaled by a factor α ?

- I: The response becomes nonlinear.
- II: The response remains unchanged.
- III: The response is scaled by the same factor α .
- IV: The response becomes zero.
- V: I do not know

What is the significance of the superposition principle in analyzing LTI systems?

- I: It allows us to ignore the initial conditions.
- II: It allows us to decompose the system response into free evolution and forced response.
- III: It makes the system response independent of the input.
- IV: It ensures the system response is always exponential.
- V: I do not know

Which of the following statements is true about the superposition principle in LTI systems?

- I: It only applies to nonlinear systems.
- II: It is only valid for zero initial conditions.
- III: It states that the response to a sum of inputs is the sum of the responses to each input individually.
- IV: It implies that the system response is always sinusoidal.
- V: I do not know

Recap of sub-module

- superposition principle helps logically separating specific causes into specific effects
- linear RRs \implies superposition principle
- superposition principle => "whole = free + forced"
- nonlinear systems WON'T satisfy this principle!

- what is the superposition principle, and what does it imply 8

?