how to linearize a RR

- how to linearize a RR 1

Contents map

developed content units	taxonomy levels
linearization	u1, e1
prerequisite content units	taxonomy levels
RR	u1, e1

Main ILO of sub-module "how to linearize a RR"

Linearize a nonlinear RR around an equilibrium point

The path towards linearizing a model

- what does linearizing a function mean?
- what does linearizing a model mean?
- how shall we linearize a model?

What does linearizing a scalar function mean?

- how to linearize a RR 5

What does linearizing a scalar function mean?

(but the approximation is valid only close to the linearization point)

- how to linearize a RR 5

Obvious requirement

(but sometimes people forget about it ...)

to compute the approximation

$$f(y) \approx f(\overline{y}) + \frac{\partial f}{\partial y}\Big|_{\overline{y}} (y - \overline{y})$$

the derivative of f at \overline{y} must be defined. (notation: $f \in C^n$ means that f has all its derivatives up to order n defined in \mathbb{R} . $f \in C^n(\mathcal{X})$ means defined in $\mathcal{X} \subseteq \mathbb{R}$)

What does linearizing a vectorial function mean?

 $\boldsymbol{f}: \mathbb{R}^{n} \mapsto \mathbb{R}^{m}, \quad \boldsymbol{f} \in C^{1}$ enables computing $\boldsymbol{f}(\boldsymbol{y}) \approx \boldsymbol{f}(\boldsymbol{y}_{0}) + \nabla_{\boldsymbol{y}} \boldsymbol{f}|_{\boldsymbol{y}_{0}} (\boldsymbol{y} - \boldsymbol{y}_{0})$

linearize \implies *approximate each component!*

What does linearizing a vectorial function mean?

 $\boldsymbol{f}: \mathbb{R}^{n} \mapsto \mathbb{R}^{m}, \quad \boldsymbol{f} \in C^{1}$ enables computing $\boldsymbol{f}(\boldsymbol{y}) \approx \boldsymbol{f}(\boldsymbol{y}_{0}) + \nabla_{\boldsymbol{y}} \boldsymbol{f}|_{\boldsymbol{y}_{0}} (\boldsymbol{y} - \boldsymbol{y}_{0})$

linearize \implies *approximate each component!*

Discussion: then $\nabla_{\mathbf{y}} \mathbf{f}|_{\mathbf{y}_0}$ must be a matrix. Of which dimensions?

Example: linearize f around y_0

$$\boldsymbol{f}(\boldsymbol{y}[k]) = \begin{bmatrix} \sin(y_1[k]) + \cos(y_2[k]) \\ \exp(y_1[k]y_2[k]) \end{bmatrix} \quad \boldsymbol{y}_0 = \boldsymbol{y}(0) = [0, \pi]$$

- how to linearize a RR 8

And what if the vectorial function depends on more than one variable?

Assuming f differentiable in y_0, u_0 ,

$$\left. f\left(\boldsymbol{y}, \boldsymbol{u} \right) \approx f\left(\boldsymbol{y}_{0}, \boldsymbol{u}_{0} \right) + \left. \nabla_{\boldsymbol{y}} f \right|_{\boldsymbol{y}_{0}, \boldsymbol{u}_{0}} \left(\boldsymbol{y} - \boldsymbol{y}_{0} \right) + \left. \nabla_{\boldsymbol{u}} f \right|_{\boldsymbol{y}_{0}, \boldsymbol{u}_{0}} \left(\boldsymbol{u} - \boldsymbol{u}_{0} \right) \right.$$

with both $\nabla_{\boldsymbol{y}} \boldsymbol{f}|_{\boldsymbol{y}_0, \boldsymbol{u}_0}$ and $\nabla_{\boldsymbol{u}} \boldsymbol{f}|_{\boldsymbol{y}_0, \boldsymbol{u}_0}$ matrices of opportune size.

And what if the vectorial function depends on more than one variable?

Assuming f differentiable in y_0, u_0 ,

$$\boldsymbol{f}(\boldsymbol{y},\boldsymbol{u}) \approx \boldsymbol{f}(\boldsymbol{y}_0,\boldsymbol{u}_0) + \nabla_{\boldsymbol{y}} \boldsymbol{f}|_{\boldsymbol{y}_0,\boldsymbol{u}_0} (\boldsymbol{y} - \boldsymbol{y}_0) + \nabla_{\boldsymbol{u}} \boldsymbol{f}|_{\boldsymbol{y}_0,\boldsymbol{u}_0} (\boldsymbol{u} - \boldsymbol{u}_0)$$

with both $\nabla_y f|_{y_0,u_0}$ and $\nabla_u f|_{y_0,u_0}$ matrices of opportune size. Alternative notation:

$$\boldsymbol{f}(\boldsymbol{y}, \boldsymbol{u}) \approx \boldsymbol{f}(\boldsymbol{y}_0, \boldsymbol{u}_0) + \nabla \boldsymbol{f}(\boldsymbol{y}, \boldsymbol{u}) \Big|_{\boldsymbol{y}_0, \boldsymbol{u}_0} \begin{bmatrix} \Delta \boldsymbol{y} \\ \Delta \boldsymbol{u} \end{bmatrix}$$

Graphical example with a $\mathbb{R}^2 \mapsto \mathbb{R}$ function

$$f(y, u) \approx f(y_0, u_0) + \nabla f(y, u) \Big|_{y_0, u_0} \begin{bmatrix} \Delta x \\ \Delta u \end{bmatrix}$$

Graphical example with a $\mathbb{R}^2 \mapsto \mathbb{R}$ function

$$f(y, u) \approx f(y_0, u_0) + \nabla f(y, u) \Big|_{y_0, u_0} \begin{bmatrix} \Delta x \\ \Delta u \end{bmatrix}$$

if $\mathbf{f} = [f_1, f_2]$ then have two distinct plots, but the concept is the same

- how to linearize a RR 10

Thus, linearization = stopping the Taylor series at order one

$$f \in C^{M}(\mathbb{R}) \implies f(y) \approx \sum_{m=0}^{M} \frac{f^{(m)}(y_{0})}{m!} (y - y_{0})^{m}$$

- how to linearize a RR 11

Thus, linearization = stopping the Taylor series at order one

$$f \in C^{M}(\mathbb{R}) \implies f(y) \approx \sum_{m=0}^{M} \frac{f^{(m)}(y_{0})}{m!} (y - y_{0})^{m}$$

multivariable extension = less neat formulas, but the concept is the same. The most

important case for our purposes:

$$\boldsymbol{f} \in C^{1}(\mathbb{R}^{n},\mathbb{R}^{m}) \implies \boldsymbol{f}(\boldsymbol{y},\boldsymbol{u}) \approx \boldsymbol{f}(\boldsymbol{y}_{0},\boldsymbol{u}_{0}) + \nabla_{\boldsymbol{y}}\boldsymbol{f}|_{\boldsymbol{y}_{0}}(\boldsymbol{y}-\boldsymbol{y}_{0}) + \nabla_{\boldsymbol{u}}\boldsymbol{f}|_{\boldsymbol{u}_{0}}(\boldsymbol{u}-\boldsymbol{u}_{0})$$

- how to linearize a RR 12

?

What does linearizing an ODE mean?

$$\mathbf{y}^+ = \mathbf{f}(\mathbf{y}, \mathbf{u}) \approx \widetilde{\mathbf{y}}^+ = A\widetilde{\mathbf{y}} + B\widetilde{\mathbf{u}}$$

linearize \implies *approximate the dynamics!*

Discussion: what is the simplest way to make this linear?

$$y^+ = ay + bu^{2/3}$$

Discussion: what is the simplest way to make this linear?

$$y^+ = ay + bu^{2/3}$$

Another discussion: can we apply the same "linearization trick" to $y^+ = a\sqrt{y} + bu$?

Discussion: why do we linearize nonlinear systems?

- how to linearize a RR 15

Discussion: where do we linearize nonlinear systems? Note: main difference w.r.t. CT systems = equilibria are on the bisectors:

Discussion: where do we linearize nonlinear systems? Note: main difference w.r.t. CT systems = equilibria are on the bisectors:

Discussion: where do we linearize nonlinear systems? Note: main difference w.r.t. CT systems = equilibria are on the bisectors:

$$(\mathbf{y}_{\mathrm{eq}}, \mathbf{u}_{\mathrm{eq}})$$
 equilibrium $\implies \mathbf{f}(\mathbf{y}_{\mathrm{eq}}, \mathbf{u}_{\mathrm{eq}}) = \mathbf{y}_{\mathrm{eq}}$

$$(\mathbf{y}_{\mathrm{eq}}, \mathbf{u}_{\mathrm{eq}})$$
 equilibrium $\implies \mathbf{f}(\mathbf{y}_{\mathrm{eq}}, \mathbf{u}_{\mathrm{eq}}) = \mathbf{y}_{\mathrm{eq}}$

Procedure (assuming that the Taylor expansion exists):

- consider $\boldsymbol{y} = \boldsymbol{y}_{eq} + \Delta \boldsymbol{y}$, and $\boldsymbol{u} = \boldsymbol{u}_{eq} + \Delta \boldsymbol{u}$
- compute

$$\boldsymbol{f}(\boldsymbol{y}, \boldsymbol{u}) \approx \boldsymbol{f}(\boldsymbol{y}_0, \boldsymbol{u}_0) + \nabla_{\boldsymbol{y}} \boldsymbol{f}|_{\boldsymbol{y}_0} (\boldsymbol{y} - \boldsymbol{y}_0) + \nabla_{\boldsymbol{u}} \boldsymbol{f}|_{\boldsymbol{u}_0} (\boldsymbol{u} - \boldsymbol{u}_0)$$

setting though $y_0 = y_{eq}$

$$(\mathbf{y}_{\mathrm{eq}}, \mathbf{u}_{\mathrm{eq}})$$
 equilibrium $\implies \mathbf{f}(\mathbf{y}_{\mathrm{eq}}, \mathbf{u}_{\mathrm{eq}}) = \mathbf{y}_{\mathrm{eq}}$

Procedure (assuming that the Taylor expansion exists):

- consider $\boldsymbol{y} = \boldsymbol{y}_{eq} + \Delta \boldsymbol{y}$, and $\boldsymbol{u} = \boldsymbol{u}_{eq} + \Delta \boldsymbol{u}$
- compute

$$\boldsymbol{f}(\boldsymbol{y},\boldsymbol{u}) \approx \boldsymbol{f}(\boldsymbol{y}_0,\boldsymbol{u}_0) + \nabla_{\boldsymbol{y}} \boldsymbol{f}|_{\boldsymbol{y}_0} (\boldsymbol{y} - \boldsymbol{y}_0) + \nabla_{\boldsymbol{u}} \boldsymbol{f}|_{\boldsymbol{u}_0} (\boldsymbol{u} - \boldsymbol{u}_0)$$

setting though $y_0 = y_{eq}$

$$\implies \mathbf{y}^{+} = (\mathbf{y}_{eq}^{+} + \Delta \mathbf{y}^{+}) = \mathbf{y}_{eq} + \Delta \mathbf{y}^{+} \approx \mathbf{f}(\mathbf{y}_{eq}, \mathbf{u}_{eq}) + \nabla \mathbf{f}(\mathbf{y}, \mathbf{u}) \Big|_{\mathbf{y}_{eq}, \mathbf{u}_{eq}} \begin{bmatrix} \Delta \mathbf{y} \\ \Delta \mathbf{u} \end{bmatrix}$$

$$(\mathbf{y}_{\mathrm{eq}}, \mathbf{u}_{\mathrm{eq}})$$
 equilibrium $\implies \mathbf{f}(\mathbf{y}_{\mathrm{eq}}, \mathbf{u}_{\mathrm{eq}}) = \mathbf{y}_{\mathrm{eq}}$

Procedure (assuming that the Taylor expansion exists):

- consider $y = y_{eq} + \Delta y$, and $u = u_{eq} + \Delta u$
- compute

$$\boldsymbol{f}(\boldsymbol{y},\boldsymbol{u}) \approx \boldsymbol{f}(\boldsymbol{y}_0,\boldsymbol{u}_0) + \nabla_{\boldsymbol{y}} \boldsymbol{f}|_{\boldsymbol{y}_0} (\boldsymbol{y} - \boldsymbol{y}_0) + \nabla_{\boldsymbol{u}} \boldsymbol{f}|_{\boldsymbol{u}_0} (\boldsymbol{u} - \boldsymbol{u}_0)$$

setting though $y_0 = y_{eq}$

$$\implies \mathbf{y}^{+} = (\mathbf{y}_{eq}^{+} + \Delta \mathbf{y}^{+}) = \mathbf{y}_{eq} + \Delta \mathbf{y}^{+} \approx \mathbf{f}(\mathbf{y}_{eq}, \mathbf{u}_{eq}) + \nabla \mathbf{f}(\mathbf{y}, \mathbf{u}) \Big|_{\mathbf{y}_{eq}, \mathbf{u}_{eq}} \begin{bmatrix} \Delta \mathbf{y} \\ \Delta \mathbf{u} \end{bmatrix}$$

note then that $y_{eq} = f(y_{eq}, u_{eq})$, so that we can simplify the previous expression

 $(\mathbf{y}_{eq}, \mathbf{u}_{eq})$ equilibrium \implies

$$\Delta \boldsymbol{y}^{+} \approx \nabla_{\boldsymbol{y}} \boldsymbol{f}(\boldsymbol{y}, \boldsymbol{u}) \Big|_{\boldsymbol{y}_{eq}, \boldsymbol{u}_{eq}} \Delta \boldsymbol{y} + \nabla_{\boldsymbol{u}} \boldsymbol{f}(\boldsymbol{y}, \boldsymbol{u}) \Big|_{\boldsymbol{y}_{eq}, \boldsymbol{u}_{eq}} \Delta \boldsymbol{u}$$

and, since

- the two $\nabla\,\dot{}s$ are matrices, and
- this is an approximate dynamics,

it follows that the approximated system is

$$\Delta \widetilde{\boldsymbol{y}}^{+} = A \Delta \widetilde{\boldsymbol{y}} + B \Delta \boldsymbol{u}$$

What does this mean graphically?

$$y^{+} = f(y, u)$$
 vs. $\Delta \tilde{y}^{+} = A \Delta \tilde{y} + B \Delta \tilde{u}$

- how to linearize a RR 19

• linearizing $y^+ = f(y, u)$ is meaningful only around an equilibrium (y_{eq}, u_{eq})

- linearizing $y^+ = f(y, u)$ is meaningful only around an equilibrium (y_{eq}, u_{eq})
- to find the equilibria of a system we need to solve f(y, u) = y

- linearizing $y^{+} = f(y, u)$ is meaningful only around an equilibrium (y_{eq}, u_{eq})
- to find the equilibria of a system we need to solve f(y, u) = y
- each equilibrium will lead to its "own" corresponding linear model $y^+ = Ay + Bu$, where A and B thus depend on (y_{eq}, u_{eq}) and y, u in $y^+ = Ay + Bu$ have actually the meaning of Δy , Δu with respect to the equilibrium

- linearizing $y^{+} = f(y, u)$ is meaningful only around an equilibrium (y_{eq}, u_{eq})
- to find the equilibria of a system we need to solve f(y, u) = y
- each equilibrium will lead to its "own" corresponding linear model $y^+ = Ay + Bu$, where A and B thus depend on (y_{eq}, u_{eq}) and y, u in $y^+ = Ay + Bu$ have actually the meaning of Δy , Δu with respect to the equilibrium
- each linearized model y⁺ = Ay + Bu is more or less valid only in a neighborhood of (y_{eq}, u_{eq}). Moreover the size of this neighborhood depends on the curvature of f around that specific equilibrium point

• linear systems are easier to analyze than nonlinear systems

- linear systems are easier to analyze than nonlinear systems
- modal analysis and rational Z-transforms call for linear systems

- linear systems are easier to analyze than nonlinear systems
- modal analysis and rational Z-transforms call for linear systems
- many advanced control techniques are based on linear systems

- linear systems are easier to analyze than nonlinear systems
- modal analysis and rational Z-transforms call for linear systems
- many advanced control techniques are based on linear systems

linearization = a very useful tool to do analysis and design of control systems

Summarizing

Linearize a nonlinear RR around an equilibrium point

- find the equilibria
- select an equilibrium
- compute the derivatives around that equilibrium
- use the formulas
- don't forget that you are also changing the coordinate system!

Most important python code for this sub-module

This will do everything for you

https://python-control.readthedocs.io/en/latest/generated/control. linearize.html

though it is dangerous to use tools without knowing how they work

Self-assessment material

- how to linearize a RR 1

What is the primary purpose of linearizing a nonlinear system around an equilibrium point?

Potential answers:

- I: To approximate the system's behavior in a small neighborhood of the equilibrium.
- II: To completely replace the nonlinear system with a linear one globally.
- III: To eliminate all nonlinearities in the system.
- IV: To make the system unstable for control purposes.
- V: I do not know

Which of the following is a necessary condition for linearizing a function f(y) around a point \overline{y} ?

Potential answers:

- I: The function f(y) must be differentiable at \overline{y} .
- II: The function f(y) must be discontinuous at \overline{y} .
- III: The function f(y) must be constant in a neighborhood of \overline{y} .
- IV: The function f(y) must be linear globally.
- V: I do not know

What is the dimension of the Jacobian matrix $\nabla_y f$ for a vectorial function $f : \mathbb{R}^n \mapsto \mathbb{R}^m$?

Potential answers:

I: $m \times n$ II: $n \times m$

III: $n \times n$

IV: $m \times m$

 $V{:}\ I\ do\ not\ know$

In the context of discrete-time systems, where are the equilibria located?

Potential answers:

- I: On the bisector where y = f(y).
- II: On the bisector where y = u.
- III: On the bisector where f(y) = u.
- IV: On the bisector where y = 0.
- V: I do not know

What is the main limitation of linearizing a nonlinear system around an equilibrium point?

Potential answers:

- I: The approximation is only valid in a small neighborhood of the equilibrium.
- II: The linearized system is always unstable.
- III: The linearized system cannot be used for control purposes.
- IV: The linearized system is always globally accurate.
- V: I do not know

Recap of sub-module "how to linearize a RR"

- linearization requires following a series of steps (see the summary above)
- the model that one gets in this way is an approximation of the original model
- having a graphical understanding of what means what is essential to remember how to do things
- better testing a linear controller before a nonlinear one

- how to linearize a RR 8

?