building and interpreting phase portraits for RRs

Contents map

developed content units	taxonomy levels
phase portrait	u1, e1
prerequisite content units	taxonomy levels

ODE	u1, e1
RR	u1, e1

Main ILO of sub-module

"building and interpreting phase portraits for RRs"

Construct and interpret phase portraits of first- and secondorder autonomous RRs using qualitative analysis techniques

Starting with a CT example: a Lotka-Volterra model:

Phase Portrait in CT = a graphical representation of the trajectories of a dynamical system in the state space

But what happens if we discretize the system?

$$\left\{ \begin{array}{ll} \dot{y}_{\rm rabbits} &=& 0.4 \cdot y_{\rm rabbits} - 0.5 \cdot y_{\rm rabbits} \cdot y_{\rm foxes} \\ \dot{y}_{\rm foxes} &=& -3 \cdot y_{\rm foxes} + 0.7 \cdot y_{\rm rabbits} \cdot y_{\rm foxes} \end{array} \right.$$

↓

$$\begin{cases} y_{\text{rabbits}}^{+} &= 1.3 \cdot y_{\text{rabbits}} - 0.7 \cdot y_{\text{rabbits}} \cdot y_{\text{foxes}} \\ y_{\text{foxes}}^{+} &= 0.8 \cdot y_{\text{foxes}} + 0.9 \cdot y_{\text{rabbits}} \cdot y_{\text{foxes}} \end{cases}$$

But what happens if we discretize the system?

4

$$\begin{cases} \dot{y}_{\rm rabbits} &= 0.4 \cdot y_{\rm rabbits} - 0.5 \cdot y_{\rm rabbits} \cdot y_{\rm foxes} \\ \dot{y}_{\rm foxes} &= -3 \cdot y_{\rm foxes} + 0.7 \cdot y_{\rm rabbits} \cdot y_{\rm foxes} \end{cases}$$

∥

$$\begin{cases} y_{\text{rabbits}}^{+} = 1.3 \cdot y_{\text{rabbits}} - 0.7 \cdot y_{\text{rabbits}} \cdot y_{\text{foxes}} \\ y_{\text{foxes}}^{+} = 0.8 \cdot y_{\text{foxes}} + 0.9 \cdot y_{\text{rabbits}} \cdot y_{\text{foxes}} \end{cases}$$

changing discretization time T will make the parameters change, and thus get different approximations

Summarizing

Construct and interpret phase portraits of first- and secondorder autonomous RRs using qualitative analysis techniques

- the plots are basically the same that one may get from the phase portraits relative to ODEs, but they are discrete versions of them
- the accuracy of the discretization depends on the sampling period, and thus one shall always be a bit wary of the results one get

Most important python code for this sub-module

Tutorial on how to plot phase portraits

https://aleksandarhaber.com/

phase-portraits-of-state-space-models-and-differential-equations-in-pythometry and a state-space-models-and-differential-equations-in-pythometry and a state-space-models-and-differential-equations

Self-assessment material

What is the primary purpose of a phase portrait for a discrete-time system?

- I: To compute the exact solution of the system
- II: To visualize the qualitative behavior of the system's trajectories in state space
- III: To determine the numerical stability of the system
- IV: To solve the system's differential equations analytically
- V: I do not know

What happens to the accuracy of a discrete-time system's phase portrait as the discretization time T decreases?

- I: The phase portrait becomes less accurate
- II: The phase portrait becomes more accurate, converging to the continuoustime solution
- III: The phase portrait remains unchanged
- IV: The phase portrait becomes unstable
- V: I do not know

When discretizing the Lotka-Volterra model, what is the effect of changing the discretization time T?

- I: The system's equilibria change
- II: The parameters of the discretized system change, leading to different approximations
- III: The system becomes unstable
- IV: The system's trajectories become chaotic
- V: I do not know

- building and interpreting phase portraits for RRs 4

What does a stable equilibrium point in a discrete-time phase portrait indicate?

- I: Trajectories diverge away from the equilibrium point
- II: Trajectories converge to the equilibrium point over time
- III: The system exhibits periodic behavior
- IV: The system becomes chaotic
- V: I do not know

What does a closed loop in a discrete-time phase portrait typically represent?

- I: A stable equilibrium point
- II: An unstable equilibrium point
- III: Periodic or quasi-periodic behavior
- IV: Chaotic behavior
- V: I do not know

Recap of sub-module "building and interpreting phase portraits for RRs"

- A phase portrait is a graphical representation of a dynamical systems trajectories in state space.
- Phase portraits provide qualitative insight into system behavior without requiring explicit solutions.
- First-order systems have a one-dimensional state space, while second-order systems require two dimensions, etc.
- The smaller the sampling period *T*, the closer the discrete-time phase portraits is to the one one would get from the continuous time version of the system

- building and interpreting phase portraits for RRs 8

?