Is this time series a solution of this recurrence relation?

Contents map

developed content units	taxonomy levels
recurrence relation u1, e1	
prerequisite content units	taxonomy levels
delay operator	u1, e1

Main ILO of sub-module

"Is this time series a solution of this recurrence relation?"

Decide whether a given time series is a solution to a specified recurrence relation by direct verification

What is a time series?

y(kT), or y[k] for simplicity of notation (assuming time discrete in this module)

What is the equivalent of a derivative for discrete-time signals?

Would you say that $y[k] = y[k]q^{-1}$, in this case?

"uhm, where are we going with all this stuff?" → be able to do forecasts

would you be able to compute y[6] from this graph, if you knew that y[k] = 1.2y[k + 1]?

- Is this time series a solution of this recurrence relation? 7

Example:
$$y[k+1] = 0.5y^2[k]u[k]$$

⁻ Is this time series a solution of this recurrence relation? 8

k	y[k]	u[k]
0	0.5	1
1	0.15	1.2
2		2.1
3		1.5
4		0.5
5		0.9

⁻ Is this time series a solution of this recurrence relation? 8

Example:
$$y[k+1] = 0.5y^2[k]u[k]$$

k	y[k]	u[k]
0	0.5	1
1	0.15	1.2
2	≈0.02	2.1
3		1.5
4		0.5
5		0.9

Example:
$$y[k+1] = 0.5y^2[k]u[k]$$

k	y[k]	u[k]	
0	0.5	1	
1	0.15	15 1.2	
2	≈0.02	2.1	
3		1.5	
4		0.5	
5		0.9	

⁻ Is this time series a solution of this recurrence relation? 8

Notation

symbol	\mapsto	meaning	alternative 1	alternative 2
÷		÷	÷	:
<i>y</i> ⁺⁺⁺		<i>y</i> [<i>k</i> +3]	yq ³	y ^[3]
y^{++}		y[k+2]	yq ²	y ^[2]
y^+		y[k+1]	yq^1	$y^{[1]}$
У		y[k]	yq ⁰	y ^[0]
y^{-}		y[k-1]	yq^{-1}	$y^{[-1]}$
<i>y</i>		y[k-2]	yq^{-2}	y ^[-2]
<i>y</i>		y[k-3]	yq^{-3}	y ^[-3]
÷		÷	÷	:

But what does it mean to solve a RR, graphically?

Is knowing the RR enough to be able to generate a trajectory?

Does $\{y[k] = \cos[k], y[0] = 1\}$ solve this RR?

Are we done with this?

Decide whether a given function is a solution to a specified RR by direct verification

 \rightarrow no, there are still a lot of cases we shall cover

Notation time!

In control, modelling a dynamical system = defining

$$\mathbf{y}^{+} = \mathbf{f}(\mathbf{y}, \mathbf{u}, \mathbf{d}, \mathbf{\theta}),$$

thus defining:

- the variables
 - **u** = inputs (*i.e.*, what we can steer)
 - d = disturbances (i.e., what we cannot steer but that still influences the system)
 - **y** = outputs (*i.e.*, what we are interested into)
- the shape of *f*
- the value of its parameters ${m heta}$
- bold font = vector

⁻ Is this time series a solution of this recurrence relation? 14

A graphical example of $y^+ = f(y, u)$

https://www.geogebra.org/classic/mmppe6hs

The special RR $y^+ = ay + bu$

Watch out: converting an ODE to a RR is not just substituting 'dots' with 'pluses'

temperature of the center of a cake in an oven whose temperature is 200 degrees:

Ceci n'est pas une pipe.

Important point: model ≠ real world

Ceci n'est pas un gâteau.

 $T^+ = f(T)$

Summarizing

Decide whether a given function is a solution to a specified RR by direct verification

- check y, compute f(y), compute y⁺
- does $f(y) = y^+?$
- same apply for higher orders / more complex RRS from notational perspectives

⁻ Is this time series a solution of this recurrence relation? 20

Most important python code for this sub-module

Solving RRs

https://www.geeksforgeeks.org/recurrence-relation-in-python/

Self-assessment material

Question 1

Which of the following best describes what it means for a function y[k] to be a solution of a RR?

Potential answers:

- I: It satisfies the RR for at least one value of k.
- II: It satisfies the RR for all values of k in its domain.
- III: It approximately satisfies the RR within a certain error margin.
- IV: It satisfies the RR only at integer values of k.
- V: I do not know

Question 2

What additional information is needed to uniquely determine a solution of a RR?

Potential answers:

- I: The function y[k] itself.
- II: An initial condition specifying the value of y at a given time.
- III: A boundary condition at two different points.
- IV: The highest-order difference of *y*.
- V: I do not know

Question 3

Given the RR $y^+ = y$, which of the following functions is a solution?

Potential answers:

```
I: y[k] = 0

II: y[k] = C, where C is a constant.

III: y[k] = \sin k

IV: y[k] = \frac{1}{k+1}

V: I do not know
```

Recap of sub-module

- a function is a solution of a RR if it satisfies the equation for all values in its domain
- initial conditions are necessary to uniquely determine a solution

- Is this time series a solution of this recurrence relation? 6

?