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Contents map

developed content units taxonomy levels
state of a system u1, e1
separation principle u1, e1

prerequisite content units taxonomy levels
ODE u1, e1
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Main ILO of sub-module “state space representations”

Define the meaning of “state space representation” in
the context of linear and non-linear dynamical systems
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Discussion: which information do you need to forecast accurately how long
you may use your cellphone before its battery hits 0%?
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Summarizing
these pieces of information contain all I need to forecast the future evolution of the
battery level:

• current level of charge of the battery
• how much I will use the phone in the future
• how healthy the battery of my phone is
• which environmental factors may induce additional effects (too warm, too cold)
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A simple model of the battery charge as a dynamical system

Time Remaining = Discharge Rate
Remaining Capacity

example: 500mA
2000mAh

= 4hours

rewriting as an ODE:
• y(t) = Q(t) = remaining battery capacity at time t (mAh)
• u(t) = I(t) = current discharge rate at time t (mA)

Ô⇒ ẏ = −u
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Ô⇒ ẏ = −u

- state space representations 6



What is a state?

{ ẋ = −u
y = x

“the current value of the state x(t) contains all the information necessary to forecast
the future evolution of the output y(t) and of the state x(t), assuming to know the
future u(t). I.e., to compute the future values y(t + τ) and x(t + τ) it is enough to
know the current x(t) and the current and future inputs u(t ∶ t + τ)”
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Question 1

In a spring-mass system, which of the following is a valid state variable?

Potential answers:

I: The temperature of the spring.
II: The displacement of the mass from its equilibrium position.

III: The color of the mass.
IV: The external force applied to the system.
V: I do not know.
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Question 2

Which of the following pairs of variables can fully describe the state of a spring-mass
system?

Potential answers:

I: The mass of the spring and the stiffness of the mass.
II: The external force and the displacement of the mass.

III: The displacement of the mass and the velocity of the mass.
IV: The acceleration of the mass and the color of the spring.
V: I do not know.
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What do we mean with “modelling a state-space dynamical system”?
Defining

{ ẋ = f (x, u, d , θ)
y = g (x, u, d , θ)

and
• the variables

• u = the inputs
• d = the disturbances
• x = the states vector
• y = the measured outputs

• the structure of the functions f and g
• the value of the parameters θ
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State space model - definition
Ingredients:

• the number of inputs, outputs and state variables must be finite
• the differential equations must be first order
• the separation principle (the current value of the state contains all the information

necessary to forecast the future evolution of the outputs and of the state) shall be
satisfied

state space model = finite set of first-order differential equations that connect a finite
set of inputs, outputs and state variables so that they satisfy the separation principle
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State space representations - Notation
• u1, . . . , um = inputs
• x1, . . . , xn = states
• y1, . . . , yp = outputs
• d1, . . . , dq = disturbances
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State space representations - Notation

ẋ = f (x, u)
y = g (x, u)

• f = state transition map
• g = output map
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examples
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RC-circuit

vR iR

vCV

v̇C = −
1

RC
vC +

1
RC

V (1)

or, using control-oriented names,

ẋ = − 1
RC

x + 1
RC

u y = x (2)
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Generalization: exponential growth, scalar version

ẋ = αx + βu y = x (3)
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Generalizing in an other way: RCL-circuits

e(t)

R

C

L

EOM: Kirchhoff laws Ô⇒ vL(t) = Ldi(t)
dt

vi(t) = Ri(t) vC(t) =
1
C ∫

t

0
i(τ)dτ

e(t) = vL(t) + vR(t) + vC(t) Ô⇒ e(t) = Ldi(t)
dt
+ Ri(t) + 1

C ∫
t

0
i(τ)dτ (4)
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Generalizing in an other way: RCL-circuits part two

e(t) = Ldi(t)
dt
+ Ri(t) + 1

C ∫
t

0
i(τ)dτ (5)

can be rewritten as

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

˙
(∫

t

0
i(τ)dτ) = i(t)

i̇(t) = 1
L

e(t) − R
L

i(t) − 1
LC ∫

t

0
i(τ)dτ

(6)

that can be rewritten as
⎧⎪⎪⎪⎨⎪⎪⎪⎩

ẋ1 = x2

ẋ2 = 1
L

u(t) − R
L

x2 −
1

LC
x1

y = x2 (7)
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Exponential growth, matricial version
Generalization of all linear systems, thus also of “RCL circuits”

{ ẋ = Ax +Bu
y = Cx
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Spring-mass systems
E.g., position of a cart fastened with a spring to a wall and subject to friction

x

m
k

f
F

EOM:
• force from the spring: Fx(t) = −kx(t)
• friction: Ff (t) = −f ẋ(t)
• applied force: F(t)
• Newton’s second law: ∑F = mẍ(t)

mẍ(t) = Fx(t) + Ff (t) + F(t) ↦ mẍ(t) = −kx(t) − f ẋ(t) + F(t)

(rewritable again as ẋ = Ax +Bu)
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• applied force: F(t)
• Newton’s second law: ∑F = mẍ(t)
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Important message: these two systems are “the same”

x

m
k

f
F

e(t)

R

C

L

thus studying ẋ = Ax +Bu in means studying both systems simultaneously!
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Lotka-Volterra
• yprey ∶= prey
• ypred ∶= predator

{ ẏprey = αyprey − βypreyypred
ẏpred = −γypred + δypreyypred

./LotkaVolterraSimulator.ipynb
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Van-der-Pol oscillator

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

ẋ1 = µ(x1 −
x3

1
3
− x2)

ẋ2 = x1
µ

(8)

./VanDerPolSimulator.ipynb
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Balancing robot

xw

yw
θw

xb

yb

θb

lw = radius of the wheel

lb = body-wheel’s center distance

mw = mass of the wheel

mb = mass of the body
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Balancing robot

(Ib +mb l2
b) θ̈b = +mb lbg sin (θb) −mb lb ẍw cos (θb) −

Kt

Rm
vm + (

KeKt

Rm
+ bf )(

ẋw

lw
− θ̇b)

(
Iw
lw
+ lw mb + lw mw) ẍw = −mb lb lw θ̈b cos (θb) +mb lb lw θ̇2

b sin (θb) +
Kt

Rm
vm − (

KeKt

Rm
+ bf )(

ẋw

lw
− θ̇b)

(9)
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Insulin concentration
• x1 ∶= sugar concentration
• x2 ∶= insulin concentration
• u1 ∶= food intake
• u2 ∶= insulin intake
• c ∶= sugar concentration in fasting (person-specific)

{ ẋ2 = a21 (x1 − c) − a22x2 + b2u2 x1 ≥ c
ẋ2 = −a22x2 + b2u2 x1 < c

{ ẋ1 = −a11x1x2 − a12 (x1 − c) + b1u1 x1 ≥ c
ẋ1 = −a11x1x2 + b1u1 x1 < c

- state space representations 13



Summarizing

Define the meaning of “state space representation” in
the context of linear and non-linear dynamical systems

• recall the definition of state space model
• be sure to have interiorized the separation principle with some practical examples
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Most important python code for this sub-module
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Important library
https://python-control.readthedocs.io/en/0.10.1/conventions.html#
state-space-systems
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Self-assessment material
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Question 3

What is the primary purpose of the separation principle in state space representations?

Potential answers:

I: To ensure that the system has an infinite number of states.
II: To eliminate the need for inputs in the system model.

III: To ensure that the current state contains all information needed to predict
future behavior.

IV: To simplify the computation of system eigenvalues.
V: I do not know.
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Question 4

Which of the following is a valid state variable in a state space representation of a
dynamical system?

Potential answers:

I: The external force applied to the system.
II: The displacement of a mass in a spring-mass system.

III: The color of the system components.
IV: The temperature of the environment.
V: I do not know.
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Question 5

What does the state transition map f in a state space representation describe?

Potential answers:

I: The relationship between inputs and outputs.
II: The evolution of the state variables over time.

III: The effect of disturbances on the system.
IV: The stability of the system.
V: I do not know.

- state space representations 4



Question 6

What is the role of the output map g in a state space representation?

Potential answers:

I: To define the system’s stability.
II: To describe the evolution of the state variables.

III: To relate the state variables and inputs to the measured outputs.
IV: To eliminate the need for disturbances in the model.
V: I do not know.
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Question 7

Which of the following pairs of variables is sufficient to describe the state of a simple
pendulum system?

Potential answers:

I: The mass of the pendulum and the length of the string.
II: The external torque and the angular displacement.

III: The angular displacement and the angular velocity.
IV: The color of the pendulum and the gravitational constant.
V: I do not know.
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Exercise: find which parts of these paragraphs are correct and which ones
are wrong

The RCL circuit can be modeled by a second-order linear differential equation where
the inductance, resistance, and capacitance determine the system’s resonance
frequency. Interestingly, in an underdamped RCL circuit, the system will always return
to equilibrium without oscillating, which reflects the energy dissipation in the resistor.
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Exercise: find which parts of these paragraphs are correct and which ones
are wrong

The Lotka-Volterra model is a non-linear system that describes interactions between
two species: one as a predator and the other as prey. The model assumes that the
growth rate of the prey population is proportional to the current population size, which
would mean that the population would grow indefinitely in the absence of predators.
Similarly, the predator population is dependent solely on the availability of prey,
implying that predators could not survive without prey even if there were other food
sources available.
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Exercise: find which parts of these paragraphs are correct and which ones
are wrong

The Van der Pol oscillator is an example of a non-linear system that exhibits limit cycle
behavior. This behavior is critical as it shows how the system can maintain a stable
oscillation regardless of initial conditions, which is a feature not present in linear
oscillators. It’s important to note that the Van der Pol oscillator can only have a single
limit cycle, and any perturbations will lead to a quick return to this cycle, indicating
that the system is highly stable.
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Recap of sub-module “state space representations”
• a set of variables is a state vector if it satisfies for that model the separation

principle, i.e., the current state vector “decouples” the past with the future
• state space models are finite, and first order vectorial models
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