Systems Laboratory, Spring 2025

Damiano Varagnolo – CC-BY-4.0

Contents map

developed content units	taxonomy levels
feedforward	u1, e1
feedback	u1, e1
model based control	u1, e1
model free control	u1, e1

prerequisite content units	taxonomy levels
ODE	u1, e1

Main ILO of sub-module "what is control"

Interpret automatic control as an opportune operation on the dynamics of a system

Example: speed control

main parameters:

- *m* mass of the car
- *b* friction coefficient
- g gravity coefficient

A sufficiently accurate model for the purpose

A sufficiently accurate model for the purpose

control objective: minimize |y(t) - r(t)| with r(t) = wished speed

Feedforward control: "I think I know which d(t) will happen, and I compensate for that"

Open loop / feedforward control: "I think I know which d(t) will happen, and I compensate for that"

u(t) = something that compensates that $\widehat{d}(t)$

problem: if $\hat{d} - d$ is big, then we expect y - r to be big too, and we won't be able to note this!

Note that open loop \neq feedforward

Open loop:

Feedforward:

Open loop / feedforward control is so simple and naïve that no system in the world uses it

Potential answers:

I: true

- II: false
- III: I do not know

Feedback control: "I measure something, and depending on what I measure I take a decision"

(= designing a controller, i.e., in this case designing a function that maps the signal e into the signal u)

Main dichotomy on how to build a feedback controller

- model free (e.g., PIDs)
- model based (e.g., MPCs)

Crash-slide on PIDs

implicit assumption: we can measure y(t)! (see also https://www.youtube.com/watch?v=UROhOmjaHp0!)

PID for the speed control task

- what is control 13

t

${\sf Question}\ 2$

A PID is guaranteed to work well

- I: yes, always
- II: no, never
- III: no, it depends on how well tuned it is
- IV: I do not know

A MPC is guaranteed to work well

- I: yes, always
- II: no, never
- III: no, it depends on how good the model is
- IV: I do not know

Is MPC guaranteed to work better than PID?

- I: yes, always
- II: no, never
- III: no, it actually depends on the situation
- IV: I do not know

Is closed loop control guaranteed to work better than open loop control?

- I: yes, always
- II: no, never
- III: no, it actually depends on the situation
- IV: I do not know

But eventually, what is control?

an algorithm to compute u(t) starting from the available information

A final note: in practice it is a good choice to combine both feedback and feedforward actions

Summarizing

Interpret automatic control as an opportune operation on the dynamics of a system

- think at what feedforward and feedback mean
- think at the fact that essentially they are ways of computing u, and that that u
 enters the dynamics of the system

Most important python code for this sub-module

Note: going through everything here would take months - just be aware of their existence and start playing with them

- https://python-control.readthedocs.io/en/0.10.1/
- https://pypi.org/project/simple-pid/
- https://www.do-mpc.com/en/latest/

Self-assessment material

PID control requires a model of the system to function correctly.

- I: yes, always
- II: no, it works without a model
- III: I do not know

Model Predictive Control (MPC) can only be applied when the model is perfect.

- I: yes, the model must be perfect
- II: no, it works with approximate models
- III: I do not know

Feedforward control is generally better than feedback control for handling disturbances.

- I: yes, feedforward is always better
- II: no, feedback control is better for disturbances
- III: I do not know

Open-loop control is more reliable than closed-loop control in all situations.

- I: yes, open-loop is always more reliable
- II: no, it depends on the system and application
- III: I do not know

PID controllers are always preferable to MPC in terms of performance.

- I: yes, PID always outperforms MPC
- II: no, it depends on the system and objectives
- III: I do not know

Recap of sub-module "what is control"

- designing a controller means designing an algorithm that transforms information into decision
- there are several types of controllers, each with pros and cons
- taking decisions (i.e., actuating *u*) means modifying the dynamics of the system

- what is control 8

?