Systems Laboratory, Spring 2025

Damiano Varagnolo – CC-BY-4.0

Is this function a solution of this ODE?

Contents map

developed content units	taxonomy levels
ODE	u1, e1
prerequisite content units	taxonomy levels
derivative	u1, e1

Main ILO of sub-module "Is this function a solution of this ODE?"

Decide whether a given function is a solution to a specified ODE by direct verification

What is a signal?

y(t) (assuming t continuous in this module)

What is the derivative of this signal?

Would you say that $y(t) = \dot{y}(t)$, in this case?

"uhm, where are we going with all this stuff?" → be able to do forecasts

> would you be able to compute y(5) from this graph, if you knew that $\dot{y}(t) = y(t)$?

an ODE is a tool to produce forecasts

an ODE is a tool to produce forecasts

notation: instead of $\dot{y}(t)$ or y(t) we will write \dot{y} or y

But what does it mean to solve an ODE?

But what does it mean to solve an ODE?

But what does it mean to solve an ODE?

Is knowing the ODE enough to be able to generate a trajectory?

Does $\{y(t) = \cos(t), y(0) = 1\}$ solve this ODE?

Are we done with this?

Decide whether a given function is a solution to a specified ODE by direct verification

 \rightarrow no, there are still a lot of cases we shall cover

Notation time!

In control, modelling a dynamical system = defining

$$\dot{\boldsymbol{y}} = \boldsymbol{f}(\boldsymbol{y}, \boldsymbol{u}, \boldsymbol{d}, \boldsymbol{\theta}),$$

thus defining:

- the variables
 - **u** = inputs (*i.e.*, what we can steer)
 - d = disturbances (i.e., what we cannot steer but that still influences the system)
 - **y** = outputs (*i.e.*, what we are interested into)
- the shape of *f*
- the value of its parameters ${m heta}$
- bold font = vector

A graphical example of $\dot{y} = f(y, u)$

https://www.geogebra.org/classic/mmppe6hs

A couple of ODEs that you may have already seen, of the type $\dot{y} = ay + bu$

Some more details about the first example

notation:
$$F(t) = ma(t) = m\dot{v}(t) \quad \mapsto \quad F = ma = m\dot{v}$$
 (1)

Some more details about the first example

notation:
$$F(t) = ma(t) = m\dot{v}(t) \quad \mapsto \quad F = ma = m\dot{v}$$
 (1)

... but $v = \dot{p}$, thus:

$$\begin{cases} \dot{p} = v \\ \dot{v} = \frac{F}{m} \end{cases}$$
(2)

Some more details about the first example

notation:
$$F(t) = ma(t) = m\dot{v}(t) \quad \mapsto \quad F = ma = m\dot{v}$$
 (1)

... but $v = \dot{p}$, thus:

$$\begin{pmatrix}
\dot{p} = v \\
\dot{v} = \frac{F}{m}
\end{cases}$$
(2)

this is a system of ODEs

Another practical example

temperature of a small brick in a very large room whose temperature is 20 degrees:

$$\dot{T} = -0.5(T-20)$$

Important point: model ≠ real world

Ceci n'est pas une brique.

$$\dot{T} = -0.5(T-20)$$

Another example: a Lotka-Volterra model (*≠* real world):

$$\begin{cases} \dot{y}_{rabbits} = 0.4 \cdot y_{rabbits} - 0.5 \cdot y_{rabbits} \cdot y_{foxes} \\ \dot{y}_{foxes} = -3 \cdot y_{foxes} + 0.7 \cdot y_{rabbits} \cdot y_{foxes} \end{cases}$$

What do we mean with "dynamics"? More geometrically (example: 2D system, autonomous)

example: two dimensional
$$\dot{\boldsymbol{y}} = \boldsymbol{f}(\boldsymbol{y})$$
 in the sense of
$$\begin{cases} \dot{y}_1 = f_1(y_1, y_2) \\ \dot{y}_2 = f_2(y_1, y_2) \end{cases}$$

Same example, alternative viewpoint

$$\begin{cases} \dot{y}_1 &= f_1(y_1, y_2) \\ \dot{y}_2 &= f_2(y_1, y_2) \end{cases}$$

Coding the Lotka-Volterra example

$$\begin{cases} \dot{y}_{\text{prey}} &= \alpha y_{\text{prey}} - \beta y_{\text{prey}} y_{\text{pred}} \\ \dot{y}_{\text{pred}} &= -\gamma y_{\text{pred}} + \delta y_{\text{prey}} y_{\text{pred}} \end{cases}$$

./LotkaVolterraSimulator.ipynb

(we'll see later on how this continuous thing is actually implemented in our discrete computers)

Discussion: did we model the Lotka-Volterra dynamical system here?

```
def myModel(v, t):
#
 # parameters
 alpha = 1.1
beta = 0.4
 gamma = 0.4
 delta = 0.1
 #
 # get the individual variables - for readability
 vPrev = v[0]
 vPred = v[1]
 #
 # individual derivatives
 dyPreydt = alpha * yPrey - beta * yPrey * yPred
 dyPreddt = - gamma * yPred + delta * yPrey * yPred
 #
return [ dyPreydt, dyPreddt ]
```

Discussion: do we need something more than just the model to simulate the system?

$$\begin{cases} \dot{y}_{\text{prey}} = 1.2y_{\text{prey}} - 0.1y_{\text{prey}}y_{\text{pred}} \\ \dot{y}_{\text{pred}} = -0.6y_{\text{pred}} + 0.2y_{\text{prey}}y_{\text{pred}} \end{cases}$$

Remember: static ≠ dynamic

$$\mathbf{y} = \mathbf{f}(\mathbf{u}, \mathbf{\theta}) \qquad \neq \qquad \dot{\mathbf{y}} = \mathbf{f}(\mathbf{y}, \mathbf{u}, \mathbf{\theta})$$

Summarizing

Decide whether a given function is a solution to a specified ODE by direct verification

- check y, compute f(y), compute \dot{y}
- does $f(y) = \dot{y}$?
- same apply for higher orders / more complex ODES from notational perspectives

Most important python code for this sub-module

Solving ODEs

https://pythonnumericalmethods.studentorg.berkeley.edu/notebooks/ chapter22.06-Python-ODE-Solvers.html

Self-assessment material

Which of the following best describes what it means for a function y(t) to be a solution of an ODE?

- I: It satisfies the ODE for at least one value of t.
- II: It satisfies the ODE for all values of t in its domain.
- III: It approximately satisfies the ODE within a certain error margin.
- IV: It satisfies the ODE only at integer values of t.
- V: I do not know

What additional information is needed to uniquely determine a solution of an ODE?

- I: The function y(t) itself.
- II: An initial condition specifying the value of y at a given time.
- III: A boundary condition at two different points.
- IV: The highest-order derivative of y.
- $V{:}\ I\ do\ not\ know$

Given the ODE $\dot{y} = y$, which of the following functions is a solution?

I:
$$y(t) = t^2$$

II: $y(t) = Ce^t$, where C is a constant.
III: $y(t) = \sin t$
IV: $y(t) = \frac{1}{t+1}$
V: I do not know

Which of the following differential equations is nonlinear?

I:
$$\dot{y} + 2y = 3$$

II: $\dot{y} = y^2$
III: $\dot{y} = 3y + 5$
IV: $\dot{y} + \sin y = t$
V: I do not know

What is an equilibrium point of the ODE $\dot{y} = y(1-y)$?

I:
$$y = 2$$

II: $y = 0$ and $y = 1$
III: $y = -1$
IV: $y = \frac{1}{2}$
V: I do not know

Recap of sub-module "Is this function a solution of this ODE?"

- a function is a solution of an ODE if it satisfies the equation for all values in its domain
- initial conditions are necessary to uniquely determine a solution

- Is this function a solution of this ODE? 8

?