GIORNATA INTERNAZIONALE DELLA FISICA MEDICA

La tecnologia della protonterapia in ambito clinico

Federica Cattani Unità di Fisica Sanitaria Istituto Europeo di Oncologia - Milano

Padova - 7 novembre 2024

Why do we use protons?

Physical advantages of protons

The main reason for using protons in radiotherapy is their favorable depth dose profile «Bragg peak»

X-rays: Steep built-up; exponential attenuation of

fluence

Particles: Bragg maximum; slowing down to stop

Depth dose distribution of particle beams

1946: Robert Wilson (1914-2000) physicist at Harvard

- Protons can be used clinically
- Accelerators are available
- Maximum radiation dose can be placed into the tumor
- Proton therapy provides sparing of normal tissues
- Modulator wheels can spread Bragg peak

"Wilson, R.R. (1946), "Radiological use of fast protons," Radiology 47, 487.

Facilities in operation worlwide with proton (orange) and carbon ions (violet)

PTGOC website: «ptcog.ch»

Rising numbers of PT centers in the world

Cumulative Number of Patients Treated with Proton Therapy

From radiation physics to a clinical radiotherapy treatment modality

A whole range of technologies is necessary to fully unleash the potential of proton therapy in the clinic

Topics

Delivery technology

Compact layout systems

Passive scattering (PS) nozzle

Modulator

Intel W13.3 Range modulator velocit/controls gift are magnitudabled to do as to take 2 vend accelse. Non-that the sense take is used in range stabiling for and/or se

«Generating high dose plateau in depth»

- Create from a Bragg peak single energy proton beam, a Spread Out Bragg Peak (SOBP) covering a volume in depth
- SOBP is a weighted sum of Bragg peak
- Range modulator wheels rotate at high frequencies and «scan» the Bragg peak fast in depth to create a SOBP

«Generating wide beam»

- Create from a 3 mm diameter single energy proton beam a wide beam with homogenous intensity (similar to linac system for photons)
- Multiple scatterers in a cascade, homogenous or costructed from a combination of rings of high-Z 0.6 cm and low-Z materials to refocus as many protons as possible into 3 cm the field aperture

Passive scattering (PS) nozzle

«Customize distal edge and shape of the beam»

Patient-specific **apertures** and **range compensators** are used to shape the beam and distal edge depth of the SOBP to the target volume contours

Passive scattering (PS) nozzle

Stray radiation in PS

- Interactions of the proton beam with components of the PS delivery system, primarily in the nozzle generate secondary radiation
- Interactions of the proton beam with the patient generate secondary ratiation
- Backscatter from treatment vault walls
- These secondary radiation sources cause a **total body neutron dose bath** to patient during PT delivery
- Some concerns about secondary cancer induction (Hall 2006): «Passive modulation results in doses distance from the field edge that are 10 times higher than those characteristic of IMRT with Xrays»

Pencil Beam Scanning (PBS)

Pencil Beam Scanning (PBS)

Energy selection system (ESS)

Layer/Energy switching using degraders

- Cyclotron produces single energy (~250 MeV)
- Degrader to select lower proton beam energy

ESS is an important source of seconday radiation, however usually located at large distance from the patient, behind shielding

Topics

Delivery technology

Compact layout systems

Compact layout systems

History of Proton Therapy (PT) facilities

PT facilities evolves from being...

Clinical proton therapy facility

IEO

Istituto Europeo di Oncologia

Compact layout systems

Compact layout systems

History of Proton Therapy (PT) facilities

PT facilities evolves from being...

Compact Single Protontherapy Room

Proteus® ONE

IBA S2C2 superconducting synchrocyclotron

for producing the energetic proton beam

Compact Single Protontherapy Room

Proteus® ONE

Rotating gantry to set the beam

at the right angle

Compact Single Protontherapy Room

Proteus® ONE

CLINICAL TREATMENT ROOM

Compact gantry with 220° rotation

Field size 20x24 cm² (scanning range)

Istituto Europeo di Oncologia

Protontherapy center in Milan (embedded)

PT embedded in existing radiation oncology clinic

- Smaller facility truly integrated in existing radiation oncology and hospital environment
- **Commercial compact systems** with one o two treatment rooms
- Proton beam only
- Pencil beam scanning (PBS) only
- Sharing treatment preparation imaging equipment and clinical workflow with conventional radiation oncology and hospital
- Clinically oriented staff, shared but PT trained staff from XT clinic, with limited technical staff to run the facility

Craniospinal irradiation

Review Article

100%

Understanding the Treatment Strategies of Intracranial Germ Cell Tumors : Focusing on Radiotherapy

Joo-Young Kim, M.D., Ph.D., Jeonghoon Park, Ph.D. Proton Therapy Center, Research Institute and Hospital, National Cancer Center, Goyang, Korea

3D conformal radiation therapy

Proton

Finite range of protons reduces dose to dose reduction in heart, lung, intestine, mediastinum

Breast cancer

Fagundes, Hug et al. ASTRO 2013

3D conformal Radiation Therapy

Volumetric Arc Therapy - VMAT

Tomotherapy

- PT is highly conformal
- Few fields needed
- Small irradiated volume

5000.0 cGy 4500.0 cGy 4000.0 cGy 3500.0 cGy 3000.0 cGy 2500.0 cGy 2500.0 cGy 1500.0 cGy

Swanson et al., IJROBP 83, 1549-57, 2012

BEST SOLUTION Thank you! FOR INDIVIDUAL PATIENTS

PHOTONS

AND PROTONS

