
Layered grammar of
graphics

Data visualization 2024/2025

Matteo Ceccarello

2025-01-20

grammar:
The principles or rules of an art, science, or technique
– Merriam-Webster dictionary

This note focuses on describing the Layered Grammar of
Graphics introduced by Wickham (2010), which forms the Wickham, Hadley. 2010. “A Layered Grammar of Graph-

ics.” Journal of Computational and Graphical Statistics
19 (1): 3–28.

basis of the ggplot2 library. At a more fundamental level,
the Layered Grammar of Graphics allows us to think about
graphics and plots in a principled way.

It is by no means the only effort to provide a formalism for
data visualization. Two notable examples are the book by
Wilkinson (2012) and the grammar for interactive graphics Wilkinson, Leland. 2012. The Grammar of Graphics.

Springer.proposed by Satyanarayan et al. (2016).

Satyanarayan, Arvind, Dominik Moritz, Kanit Wong-
suphasawat, and Jeffrey Heer. 2016. “Vega-Lite: A
Grammar of Interactive Graphics.” IEEE Transactions
on Visualization and Computer Graphics 23 (1): 341–50.

Most notably, the grammar of graphics:

• Allows to gain insight into complicated graphics pro-
duced by other people;

• Allows more flexibility and expressiveness when cre-
ating our graphics;

• Provides a consistent framework to think about
graphics;

• Constrains what can be expressed in a plot with prin-
cipled rules rather than by the API that is provided
by a library designer.

The Layered Grammar of Graphics is comprised of the fol-
lowing eight fundamental components:

• data
• aesthetic mapping
• geometric objects
• scales
• statistical transformations
• position adjustments
• facet specification
• coordinate system

Data

This is the most fundamental element of the grammar:
without data, there can be no data visualization, of course.
In the following, we will assume that we are dealing with
tidy data. Recall from the previous lecture that a table is
tidy if:

1



• Each column is a variable
• Each row is an observation
• Each cell is a single value

Aesthetic mappings

In the context of the Layered Grammar of Graphics, an
aesthetic is a visual property of the objects in the plot. For
instance, the thickness of a line is an aesthetic, the color
of a point is an aesthetic, and the length of a bar is one as
well. In general, anything in the plot whose variation can
be perceived by readers of the plot can be thought of as
an aesthetic.

An aesthetic mapping associates data variables with aes-
thetics. For instance, associating country names to the
position on the 𝑥 axis and the gross domestic product to
the position on the 𝑦 is an example of an aesthetic map-
ping.

Geometric objects

In the previous paragraph, we mentioned several marks
that can appear in a plot: lines, points, and bars. These
are called geometric objects in the grammar of graphics.

In general, geometric objects are how a chart designer rep-
resents data.

Notably, an aesthetic mappint associates variables in the
data with visual properties of geometric objects.

Scales

A scale controls the mapping from data values to aesthetic
values. The simplest example is the scale on the axes of
a plot. The ticks and labels provide a mapping between
data values and the positions of dots in the plot, i.e. the
aesthetic values of the point geometric objects.

Another example is a color scale, providing a mapping be-
tween data values (for instance countries) and color val-
ues.

The most important feature is that a scale should be invert-
ible: we need to be able to go from data values to aesthetic
values to build the plot, and we need to go from aesthetic
values back to data values (with some approximation) in
order to read the plot.

Statistical transformations

The role of a statistical transformation is to, well… trans-
form the data. Typically by summarizing it. For instance,
the computation of the mean (or median, or quantiles) is
an example of statistical transformation. But so is binning,
or computing a density estimation from the data.

2



Position adjustments

Sometimes the position of geometric objects in a plot,
based on the aesthetic mapping and mediated by the scale,
needs to be adjusted.

It might be for a design choice: in a stacked bar chart,
several bars share the same 𝑥 position and their 𝑦 position
must be adjusted so that they stand on top of each other.

It might be to reduce overplotting: often in plots using the
point geometric object there are areas in which points are
very dense. Adding a small amount of random noise to the
position of the points allows to make the picture clearer
without losing too much accuracy.

Facet specification

Faceting allows to create multiple plots with the same com-
bination of aesthetic mapping, geometric objects, scales,
position adjustments and statistical transformation. The
only difference is the data they represent. In particular,
each plot shows a subset of the data based on the values
of a combination of variables: we can have for instance a
subplot showing data for countries in different continents
in the same dataset.

Coordinate system

The coordinate system maps the position of objects (as
specified by the 𝑥 and 𝑦 aesthetic mappings, mediated by
the respective scales) onto the plane of the plot.

Most commonly we use the cartesian coordinate system,
but other coordinate systems are possible, for instance the
polar coordinate system.

Layering

One of the defining features of the Layered Grammar of
Graphics is to be layered. In particular, a layer is defined
as the combination of:

• data
• aesthetic mapping
• geometric object
• statistical transformation
• position adjustments

Layers can be stacked on top of one another, with lower
layers being (partially) hidden by upper layers. This al-
lows the creation of rather complex graphics by overlaying
several simple layers.

Observe what is missing from the layer specification:

• scales
• faceting
• coordinate system

3



These components work across layers to make the plot
readable. As such they should be shared by all layers. The
implication is that some graphics that are commonly seen
cannot be expressed in the grammar of graphics.

For instance, consider Figure Figure 1 which shows the
correlation between the number of grand slam finals played
by Roger Federer and the number of electronic engineers
in New Mexico.

Figure 1: Image from http://www.tylervigen.com/spuri
ous-correlations

Of course, there is no relationship between the two, but
using two different scales for the two different layers (one
for the tennis player, and the other for the New Mexico
engineers) misleads readers into seeing an association.

The ggplot2 implementation of the Layered
Grammar of Graphics

There is a close correspondence between the functions pro-
vided by ggplot and the elements of the grammar.

In particular, a plot specification in ggplot looks like the
following.

ggplot() +
<GEOM_FUNCTION>(
data = <DATA>,
mapping = aes(<MAPPINGS>),
stat = <STAT>,
position = <POSITION>

) +
<SCALE_FUNCTIONS> +
<COORDINATE_FUNCTION> +
<FACET_FUNCTION>

The first line, ggplot(), defines the entry point and creates
an empty graph to which several layers can then be added.
The functions used to build this specification follow a strict
naming convention:

• the aes function is to specify aesthetic mappings
• geom_* functions are for geometric objects
• stat_* functions are for statistical transformations
• scale_* functions are for scales
• position_* functions are for position adjustments
• facet_* functions are for faceting
• coord_* functions are for the coordinate system

In the following examples we use data from the
gapminder package, which you can install with
install.packages("gapminder")

To define a layer consisting of the point geometric object
with the identity statistical transformation and position
adjustment we can use the following code:

ggplot() +
layer(

data = gapminder,
mapping = aes(x=gdpPercap, y=lifeExp),
geom = 'point',
stat = 'identity',
position = 'identity'

) +
scale_x_log10()

4

http://www.tylervigen.com/spurious-correlations
http://www.tylervigen.com/spurious-correlations


40

60

80

1e+03 1e+04 1e+05
gdpPercap

lif
eE

xp

Multiple layers can be added to show different subsets of
the data, for instance to show different years:

ggplot() +
layer(

data = filter(gapminder, year == 1952),
mapping = aes(x=gdpPercap, y=lifeExp,

color=factor(year)),
geom = 'point',
stat = 'identity',
position = 'identity'

) +
layer(

data = filter(gapminder, year == 2007),
mapping = aes(x=gdpPercap, y=lifeExp,

color=factor(year)),
geom = 'point',
stat = 'identity',
position = 'identity'

) +
scale_x_log10()

30

40

50

60

70

80

1e+03 1e+04 1e+05
gdpPercap

lif
eE

xp

factor(year)

1952

2007

Default values

Oftentimes data and aesthetic mapping are shared across
all layers. In such cases, we can provide the default in
the ggplot function. Furthermore, each geometric object
has a default statistical transformation, and each statis-
tical transformation has a default geometric object. The
specifics can be found in the documentation of each ob-
ject.

Therefore, we can write a scatterplot as follows:

ggplot(data = gapminder,
mapping = aes(x=gdpPercap, y=lifeExp)) +

geom_point()

40

60

80

0 30000 60000 90000
gdpPercap

lif
eE

xp

In the following we will showcase a few of the features of
the ggplot implementation of the grammar of graphics by
conducting a few case studies on the gapminder dataset.

5



Case study: Gapminder

Hints:

• Use transparency to show overlapping points
• A log scale helps to spread out values that are

very skewed
• The shape aesthetic is configured through

numeric values. The documentation lists all of
them.

As a first step, we will build a bubble chart showing the rela-
tion between the GDP of a country and the life expectancy
in 2007.

Key points:

• Note how using several aesthetic variables allows to
encode quite some information

• Using two layers of points allows to create points that
are semi-transparent while having a solid border

library(tidyverse)
library(gapminder)
library(ggthemes) # For the scale_color_tableau function

gapminder |>
filter(year == 2007) |>
ggplot(aes(gdpPercap, lifeExp, size=pop, color=continent)) +
geom_point(alpha=0.2) +
geom_point(shape=21) +
scale_color_tableau() +
scale_x_log10(labels=scales::label_dollar()) +
labs(

title="People in rich countries\nlive longer, on average",
y = "Life expectancy", x = "GDP per capita",
size = "Population", color = "Continent",
caption = "Data from gapminder.org"

) +
theme_bw()

40

50

60

70

80

$300.00 $1,000.00 $3,000.00 $10,000.00 $30,000.00
GDP per capita

Li
fe

 e
xp

ec
ta

nc
y

Continent

Africa

Americas

Asia

Europe

Oceania

Population

2.50e+08

5.00e+08

7.50e+08

1.00e+09

1.25e+09

People in rich countries
live longer, on average

Data from gapminder.org

6

https://ggplot2.tidyverse.org/reference/scale_shape.html


Case study: statistical summaries and
position adjustments

Hints

• use position_jitter to reduce overplotting
• transofmrations can be done either in the

preprocessing phase or in the grammar itself

This second case study focuses on the use of statistical
summaries. In particular, the stat_summary function ac-
cepts the fun.data argument which should be a function
returning three values, which will then be used as the top,
bottom, and middle point of the pointrange geometric
object, which by default is used to represent summariza-
tions. The geometric object can be tweaked by changing
the geom argument: using point will use just the middle
value computed by the fun.data function, linerange will
just use the two extremes.

7



library(tidyverse)
library(gapminder)

gapminder |>
filter(year==2007) |>
ggplot(aes(x=continent, y=gdpPercap)) +
geom_point(

aes(color=continent),
size=0.7, shape=21,
position=position_jitter(width=0.2)

) +
stat_summary(

fun.data=mean_se,
geom = "pointrange"

) +
scale_y_continuous(labels=scales::label_dollar()) +
labs(

title="Wealth is unevenly distributed",
subtitle="With mean and standard error for each continent",
x = "Continent", y = "GDP per capita",
color = "Continent", caption = "Data from gapminder.org"

) +
theme_bw()

$0

$10,000

$20,000

$30,000

$40,000

$50,000

Africa Americas Asia Europe Oceania
Continent

G
D

P
 p

er
 c

ap
ita

Continent

Africa

Americas

Asia

Europe

Oceania

With mean and standard error for each continent

Wealth is unevenly distributed

Data from gapminder.org

Case study: secondary axis

Sometimes we need to use two different 𝑦 scales in the same
plot. While this is not advisable in general, in some scien-
tific fields it is a conventional representation. In ggplot
this is forbidden by the grammar with one exception: when
the secondary axis is a linear transformation of the primary
axis.

We can abuse this mechanism to produce a plot with two

8



different 𝑦 scales. The basic idea is that, upon plotting,
the data referring to the secondary axis will be rescaled to
the primary axis range. When building the secondary axis,
the range of the primary axis will be rescaled to the range
of the secondary axis in order to get the correct labels.

In this example we will build a line plot for Italy with a
line referring to the GDP (primary axis) and a second line
referring to the life expectancy (secondary axis).

The first thing to do is to get the ranges of the two vari-
ables1. 1 The pull function transforms a column of a table into

a vector.

library(tidyverse)
library(gapminder)

italy <- gapminder |> filter(country == "Italy")

# Pick the range of the variables thare are going to be plotted along the y axis
range_primary <- range(pull(italy, gdpPercap))
range_sec <- range(pull(italy, lifeExp))

Then we start building the plot. We will use different colors
to allow the reader to infer the scale associated to each line.
First, we create a line with the data for the primary axis,
as usual.

# This is the color that we are going to assign to the secondary axis
color_sec <- "#b62900"
p <- ggplot(italy, mapping=aes(x=year)) +
# First layer: primary axis
geom_line(

mapping = aes(y = gdpPercap),
linetype = "dashed"

)

Then we add the second layer. Note that in the aesthetic
mapping we rescale the lifeExp column so that it fits the
range of the primary axis.

# Second layer. We have to rescale the data to fit the
# range of the primary axis.
p <- p + geom_line(
mapping = aes(y = scales::rescale(lifeExp, from=range_sec, to=range_primary)),
color = color_sec

)

Now that we have both lines on the same plot, we need
to add the secondary axis. We do it using the sec.axis
argument of scale_y_continuous, which requires a func-
tion transforming ticks on the primary scale to ticks on the
secondary scale. In our case this function will rescale from
the primary range to the secondary range.

9



# Here we fix both scales.
p <- p + scale_y_continuous(
# The primary scale is for the GDP
name = "Gross Domestic Product",
labels = scales::label_dollar(),
# For the secondary scale we need to scale back from the primary
# range to the secondary range.
sec.axis = sec_axis(

function(ys) { scales::rescale(ys, from=range_primary, to=range_sec) },
name = "Life Expectancy"

)
)

Finally, we make some fundamental cosmetic changes using
the theme function: both axes must use the same color
and linetype as the respective lines. This helps readers
associate lines to the correct scale.

p + labs(title = "In Italy, life expectancy grew along with wealth.") +
theme_bw() +
theme(

# Tweaking the theme a bit is fundamental here: we have to match
# the appearance of the axes with the color and dashing of the lines.
axis.line.y.left = element_line(linetype = "dashed"),
axis.line.y.right = element_line(color = color_sec),
axis.ticks.y.right = element_line(color = color_sec),
axis.text.y.right = element_text(color = color_sec),
axis.title.y.right = element_text(color = color_sec)

)

$10,000

$20,000

70

75

80

1950 1960 1970 1980 1990 2000
year

G
ro

ss
 D

om
es

tic
 P

ro
du

ct
Life E

xpectancy

In Italy, life expectancy grew along with wealth.

10



Case study: faceting and line charts

Line charts require special care when we want to plot sev-
eral lines with the same color. In the following example,
where we plot the change of life expectancy throughout
the years, we have to use the group aesthetic to make sure
that there is a single group per country.

We use facet_wrap to get a subplot for each continent
in the dataset. To make the plot a bit more readable and
highlight some patterns, we make all the country lines light
gray, except for countries that at some point saw a decline
in life expectancy.

To this end, we first identify these countries.

library(tidyverse)
library(gapminder)

declining <- gapminder |>
group_by(country) |>
arrange(country, year) |>
mutate(diff = lifeExp - lag(lifeExp)) |>
ungroup() |>
filter(diff < -1.0) |>
distinct(country)

Then we use semi_join and anti_join to partition the
original dataset in countries that saw a decline in life ex-
pectancy (to be highlighted in orange) and countries that
should remain in the background.

highlight_countries <- semi_join(gapminder, declining)
no_highlight_countries <- anti_join(gapminder, declining)

We use the two datasets above in two different layers, with
different colors. Furthermore, we add a line reporting the
average for each continent.

11



gapminder |>
ggplot(aes(x=year, y=lifeExp)) +
geom_line(aes(group=country), data=no_highlight_countries, color="lightgray", linewidth=0.5) +
geom_line(aes(group=country), data=highlight_countries, color="white", linewidth=0.9) +
geom_line(aes(group=country), data=highlight_countries, color="orange", linewidth=0.5) +
# The following layer is a bit of a trick: adding a slightly thicker line with the
# same color as the background allows for the main line to stand out more from
# the surrounding context
geom_line(stat="summary", linewidth=1.5, color="white") +
geom_line(stat="summary", linewidth=1) +
facet_wrap(vars(continent)) +
labs(

title="Life expectancy grew in most, but not all, countries",
x = "Year",
y = "Life expectancy",
color = "Continent",
caption = "Data from gapminder.org"

) +
theme_bw()

Europe Oceania

Africa Americas Asia

1950 1960 1970 1980 1990 2000 1950 1960 1970 1980 1990 2000

1950 1960 1970 1980 1990 2000

40

60

80

40

60

80

Year

Li
fe

 e
xp

ec
ta

nc
y

Life expectancy grew in most, but not all, countries

Data from gapminder.org

12



Case study: pie charts

Hints:

• Pie charts are best used when there are few slices.
• Use color="white" in order to have a nice white

line separating the slices of the pie.

Pie charts are very popular, even though they are not
a very accurate way of representing information. In the
grammar of graphics a pie chart is a bar chart in polar
coordinates. The following snippet gives an example.

# This function is used to format labels.
num_fmt <- scales::label_number(scale=1/1000000, suffix=" M")

gapminder |>
filter(year == 2007) |>
group_by(continent) |>
summarise(pop = sum(pop)) |>
ungroup() |>
arrange(desc(continent)) |>
# The following mutate is needed to compute the position of labels.
mutate(labelpos = cumsum(pop) - pop/2) |>
ggplot(aes(

x=0,
y=pop,
fill=continent

)) +
geom_col(color="white") +
geom_text(aes(label=num_fmt(pop), x=0.6, y=labelpos), color="black") +
scale_fill_tableau() +
coord_polar(theta="y") +
theme_void()

25 M 586 M

3 812 M

899 M

930 M

continent

Africa

Americas

Asia

Europe

Oceania

13


	Data
	Aesthetic mappings
	Geometric objects
	Scales
	Statistical transformations
	Position adjustments
	Facet specification
	Coordinate system
	Layering
	The ggplot2 implementation of the Layered Grammar of Graphics
	Default values

	Case study: Gapminder
	Case study: statistical summaries and position adjustments
	Case study: secondary axis
	Case study: faceting and line charts
	Case study: pie charts

