ESERCIZI GEOMETRIA 2 PARTE B SETTIMANA 13 -PRIMA E SECONDA FORMA FONDAMENTALE. CURVATURA GAUSSSIANA.

Esercizio 1. Siano a, b, c tre numeri reali positivi e $U = (0, 2\pi) \times (0, +\infty)$. Definiamo la parametrizzazione $x: U \to \mathbb{R}^3$ tramite la formula

$$x(u,v) = (a(\cos(u) - v\sin(u)), b(\sin(u) + v\cos(u)), cv).$$

Dopo aver verificato l'immagine di questa parametrizzazione è un aperto dell'iperboloide descritto dall'equazione $Q: \frac{X^2}{a^2} + \frac{Y^2}{b^2} - \frac{Z^2}{c^2} = 1$ in \mathbb{R}^3 , calcolarne la matrice della prima e della seconda forma fondamentale rispetto alla base canonica dello spazio tangente $\{x_u, x_v\}$ e la curvatura gaussiana.

Esercizio 2. Siano a, b, c tre numeri reali positivi e $U = (0, \pi) \times (0, \pi)$. Definiamo la parametrizzazione $x: U \to \mathbb{R}^3$ tramite la formula

$$x(u, v) = (a\cos(u), b\sin(u)\cos(v), c\sin(u)\sin(v)).$$

Dopo aver verificato l'immagine di questa parametrizzazione è un aperto dell'ellissoide descritta dall'equazione $Q: \frac{X^2}{a^2} + \frac{Y^2}{b^2} + \frac{Z^2}{c^2} = 1$ in \mathbb{R}^3 , calcolarne la matrice della prima e della seconda forma fondamentale rispetto alla base canonica dello spazio tangente $\{x_u, x_v\}$ e la curvatura gaussiana.

Esercizio 3. Sia S la superficie di equazione $z = xy^2$ di \mathbb{R}^3 , descritta dalla parametrizzazione $x : \mathbb{R}^2 \to \mathbb{R}^3$ definita da $x(u, v) = (u, v, uv^2)$.

- (a) Calcolare la matrice della prima forma fondamentale di S rispetto alla base canonica dello spazio tangente $\{x_u,x_v\}$.
- (b) Calcolare la matrice della seconda forma fondamentale di S rispetto alla base canonica dello spazio tangente $\{x_u, x_v\}$.
- (c) Calcolare la curvatura gaussiana di S e dimostrare che $K \leq 0$ in ogni punto, e che K = 0 se e solo se y = 0.

Esercizio 4. Sia $S \subseteq \mathbb{R}^3$ la superficie (di rotazione) di equazione $x:(0,1)\times(0,1)\to\mathbb{R}^3$

$$x(u, v) = (2u + 1, u^2 \cos(2\pi v), u^2 \sin(2\pi v)).$$

- (a) S è compatta? Fornire una giustificazione.
- (b) Calcolare la matrice della prima forma fondamentale di S rispetto alla base canonica dello spazio tangente $\{x_u, x_v\}$.
- (c) Calcolare la matrice della seconda forma fondamentale di S rispetto alla base canonica dello spazio tangente $\{x_u, x_v\}$.
- (d) Calcolare la curvatura gaussiana di S.