ESERCIZI GEOMETRIA 2 PARTE B SETTIMANA 12 -DIFFERENZIALI

Esercizio 1. Sia $\underline{x}: U \to S \subseteq \mathbb{R}^3$ una superficie elementare. Mostrare che l'area di S,

$$Area(S) = \int_{U} \| x_u \wedge x_v \| dudv,$$

verifica l'uguaglianza

$$Area(S) = \int_{U} \sqrt{EG - F^2} du dv$$

dove $EG-F^2$ è il determinante della prima forma fondamentale (suggerimento: usare l'uguaglianza $\|v_1 \wedge v_2\|^2 = \|v_1\|^2 \cdot \|v_2\|^2 - (v_1 \bullet v_2)^2$, valida per ogni coppia di vettori v_1 e v_2 di \mathbb{R}^3 , dove abbiamo indicato con \bullet il prodotto scalare standard di \mathbb{R}^3).

Esercizio 2. Mostrare che, data una funzione $f: X \to Y$ di classe \mathcal{C}^{∞} tra due sottovarietà differenziabili $X \subseteq \mathbb{R}^n$ e $Y \subseteq \mathbb{R}^n$, la definizione di differenziale vista a lezione

$$(df(x_0))(v) = \frac{d((f \circ \alpha)(t))}{dt}(0)$$

non dipende dalla curva scelta $\alpha: (-\delta, \delta) \to X$ tale che $\alpha(0) = x_0$ e $\alpha'(0) = \frac{d\alpha(t)}{dt}(0) = v$.

Esercizio 3. Sia $\underline{x}:U\to X\subseteq\mathbb{R}^3$ una parametrizzazione, dove $U\subseteq\mathbb{R}^2$ è un aperto. Mostrare che per ogni $\underline{u}_0\in U$ si ha

$$(d\underline{x}(\underline{u}_0)) (1,0) = \frac{\partial \underline{x}}{\partial u} (\underline{u}_0),$$
$$(d\underline{x}(\underline{u}_0)) (0,1) = \frac{\partial \underline{x}}{\partial v} (\underline{u}_0),$$

dove $d\underline{x}(\underline{u}_0): T_{\underline{u}_0}(U) \to T_{\underline{x}(\underline{u}_0)}(X)$ indica il differenziale di \underline{x} nel punto \underline{u}_0 (suggerimento: utilizzare le curve $\alpha_1(t) = (t,0)$ e $\alpha_2(t) = (0,t)$).