ESERCIZI GEOMETRIA 2 PARTE B SETTIMANA 11 –BASE MOBILE DI FRENET PER CURVE A VELOCITÀ ARBITRARIA

Esercizio 1. Sia $\alpha: A \to \mathbb{R}^2$ una cuva a velocità non nulla e sia $\beta: B \to \mathbb{R}^2$ una riparametrizzazione a velocità unitaria di α ; poniamo $\alpha = \beta \circ \vartheta$, con $\vartheta: A \to B$ diffeomorfismo di classe \mathcal{C}^{∞} con $\vartheta'(t) > 0$ per ogni $t \in A$. Sia $\{\mathbf{t}(s), \mathbf{n}(s)\}$ la base mobile di Frenet e $\kappa(s)$ la curvatura di β . Definiamo

$$T(t) = \mathbf{t}(\vartheta(t)),$$

$$N(t) = \mathbf{n}(\vartheta(t)),$$

$$K(t) = \kappa(\vartheta(t)).$$

Dimostrare, imitando quanto visto a lezione, oppure utilizzando le formule per curve a valori in \mathbb{R}^3 considerando la curva $\tilde{\alpha}: A \to \mathbb{R}^3$ ottenuta componendo α e l'iniezione $\mathbb{R}^2 \hookrightarrow \mathbb{R}^3$ definita da $(x,y) \mapsto (x,y,0)$, la formula:

$$\alpha''(t) = \frac{dv(t)}{dt}\mathbb{T}(t) + K(t)v^{2}(t)\mathbb{N}(t)$$

dove $v(t) = ||\alpha'(t)||$ è la velocità di α .

Esercizio 2. Calcolare la funzione curvatura e il cerchio osculatore del cerchio \mathbb{S}^1 di centro (0,0) e raggio r.

Esercizio 3. Fissiamo due numeri reali a > 0 e b < 0 e sia $\sigma : \mathbb{R} \to \mathbb{R}^2$ la spirale logaritmica definita da $\sigma(t) = (ae^{bt}\cos(t), ae^{bt}\sin(t))$. Determinare la funzione curvatura K(t) di σ .

Esercizio 4. Determinare triedro di Frenet, curvatura e torsione della curva $\sigma: \mathbb{R} \to \mathbb{R}^3$ parametrizzata da $\sigma(t) = (3t - t^3, 3t^2, 3t + t^3)$.

Esercizio 5. Determinare triedro di Frenet, curvatura e torsione della curva $\gamma: \mathbb{R} \to \mathbb{R}^3$ parametrizzata da $\gamma(t) = (a(t-\sin(t)), a(1-\cos(t)), bt)$ dove a e b sono due numeri reali positivi.

Esercizio 6. Dimostrare che la curva $\gamma:(0,+\infty)\to\mathbb{R}^3$ definita da $\gamma(t)=\left(t,\frac{1+t}{t},\frac{1-t^2}{t}\right)$ è contenuta in un piano.