Box Topology vs. Topologia prodotto

Luca Mastella

Questo esercizio mira a completare i punti mancati e a formalizzare quanto visto in classe durante al tutorato riguardo all'esempio della "Box Topology" sullo spazio $\mathbb{R}^{\mathbb{N}} = \prod_{n \in \mathbb{N}} \mathbb{R}$.

Box Topology in astratto. Sia I un insieme non vuoto di indici e sia dato per ogni $i \in I$ uno spazio topologico (X_i, \mathcal{T}_i) non vuoto e una sua base \mathcal{B}_i . Sia

$$X = \prod_{i \in I} X_i.$$

i. Si mostri che l'insieme

$$\mathscr{B}_{\text{BOX}} = \left\{ B = \prod_{i \in I} U_i : U_i \in \mathcal{T}_i \right\} \subseteq \mathcal{P}(X)$$

è base per una topologia su X, detta Box Topology.

ii. Si mostri che l'insieme

$$\mathscr{B}'_{\mathrm{BOX}} = \left\{ B = \prod_{i \in I} B_i : B_i \in \mathscr{B}_i \right\} \subseteq \mathcal{P}(X)$$

è un'altra base per la Box topology su X. (sugg: ricorda l'esercizio 6 del foglio di esercizi della prima settimana di lezione)

Caso di \mathbb{R}^n . Siano ora I un insieme finito di cardinalità n e $U_i = \mathbb{R}$ dotato della topologia euclidea per ogni i = 1, ..., n.

- iii. Mostrare che la box topology su $X = \mathbb{R}^n$ coincide con la topologia euclidea (sugg: usando come base su \mathbb{R} gli intervalli aperti e limitati, descrivere come è fatta \mathscr{B}'_{BOX} ?).
- iv. Osservare che \mathbb{R}^n fornisce un esempio del fatto che \mathscr{B}_{BOX} non da luogo in generale una topologia su X (quale proprietà non viene verificata?).

Caso di $\mathbb{R}^{\mathbb{N}}$. Siano ora $I = \mathbb{N}$, per ogni $i \in \mathbb{N}$ sia $U_i = \mathbb{R}$ con la topologia euclidea. Con queste scelte

$$X = \mathbb{R}^{\mathbb{N}} = \{ (x_n)_{n \in \mathbb{N}} : x_n \in \mathbb{R} \}.$$

- v. Descrivere esplicitamente gli insiemi \mathscr{B}_{BOX} e \mathscr{B}'_{BOX} , usando su \mathbb{R} la base data dagli intervalli aperti e limitati. Rappresentare graficamente alcuni di questi aperti, assegnando ad ogni $n \in \mathbb{N}$ una retta verticale nel piano.
- vi. Gli insiemi \mathscr{B}_{BOX} e \mathscr{B}'_{BOX} forniscono solo una base di $\mathbb{R}^{\mathbb{N}}$ o formano essi stessi una topologia? Giustificare la risposta con una dimostrazione o un controesempio.

- vii. Sia $H = \prod_{n \in \mathbb{N}} (0, +\infty)$ il "semipiano superiore". Mostrare che il punto $\bar{0} = (0, 0, \dots) \in \mathbb{R}^{\mathbb{N}}$ è punto di accumulazione per H, dunque $\bar{0} \in \bar{H}$.
- viii. Mostrare che non esiste successione in H convergente a $\bar{0}$ (sugg: data una successione $(x^{(j)})_{j\in\mathbb{N}}$, tale che $x^{(j)}\in H$, ossia $x^{(j)}=(x_0^{(j)},x_1^{(j)},\dots)$ con $x_n^{(j)}>0$ costruire un intorno aperto U di base di $\bar{0}$ tale che per ogni $j,x^{(j)}\notin U$). Dedurne che $\mathbb{R}^{\mathbb{N}}$ con la Box topology non è uno spazio metrizzabile e che in particolare la box topology e la topologia prodotto su $\mathbb{R}^{\mathbb{N}}$ non coincidono.
- ix. Sia $(x^{(j)})_{j\in\mathbb{N}}$ successione a valori in $\mathbb{R}^{\mathbb{N}}$ puntualmente convergente a $\bar{0}$ e uniformemente definitivamente nulla per tutte le coordinate tranne al più un numero finito di esse (ovvero per ogni $n \in \mathbb{N}$ le successioni $(x_n^{(j)})_{j\in\mathbb{N}}$ a valori in \mathbb{R} sono convergenti a 0 per $j \to \infty$, inoltre esiste $F \subseteq \mathbb{N}$ finito e $j_0 \in \mathbb{N}$ tali che $x_n^{(j)} = 0$ per ogni $n \in \mathbb{N} \setminus F$ e ogni $j > j_0$). Mostrare che allora $(x^{(j)})_{j\in\mathbb{N}}$ converge a $\bar{0}$ per $j \to \infty$.
- x. Mostrare che le successioni a valori in $\mathbb{R}^{\mathbb{N}}$ convergenti per la box topology sono quelle puntualmente convergenti e uniformemente definitivamente costanti per tutte le coordinate tranne al più un numero finito di esse.
- xi. Mostrare che la funzione $f: \mathbb{R} \to \mathbb{R}^{\mathbb{N}}$, f(t) = (t, t, ...) non è continua se assegnamo ad \mathbb{R} la topologia euclidea e a $\mathbb{R}^{\mathbb{N}}$ la box topology (sugg: considerare gli intervalli (-1/n, 1/n)). Notare che anche questo implica che la box topology e la topologia prodotto su $\mathbb{R}^{\mathbb{N}}$ non coincidono.
- xii. Mostrare che il sottoinsieme $\prod_{n\in\mathbb{N}}[0,1]$ di $\mathbb{R}^{\mathbb{N}}$ non è compatto per la box topology (come sottospazio di $\mathbb{R}^{\mathbb{N}}$, ma si osservi che la topologia indotta da $\mathbb{R}^{\mathbb{N}}$ coincide con la box topology data dalla topologia indotta da \mathbb{R} sugli intervalli [0,1]).
- xiii. Mostrare che i sottoinsiemi $A, B \subseteq \mathbb{R}^{\mathbb{N}}$ delle successioni rispettivamente limitate e illimitate sono entrambi aperti per la box topology, pertanto $\mathbb{R}^{\mathbb{N}}$ per la box topology non è connesso (sugg: considera un intornino opportuno di una generica successione di A e di B e mostra che è tutto contenuto nei rispettivi insiemi).

Confronto di connessione, compattezza e separazione in generale. Siano ora nuovamente (X_i, \mathcal{T}_i) spazi topologici non vuoti e $X = \prod_{i \in I} X_i$. Indichiamo con \mathcal{T}_{BOX} la Box topology e con \mathcal{T}_{PROD} la topologia prodotto su X.

xiv. Mostrare che valgono le seguenti implicazioni:

```
(X, \mathcal{T}_{BOX}) Hausdorff \iff (X_i, \mathcal{T}_i) Hausdorff per ogni i \in I \iff (X, \mathcal{T}_{PROD}) Hausdorff;

(X, \mathcal{T}_{BOX}) compatto \implies (X_i, \mathcal{T}_i) compatto per ogni i \in I \iff (X, \mathcal{T}_{PROD}) compatto;

(X, \mathcal{T}_{BOX}) connesso \implies (X_i, \mathcal{T}_i) connesso per ogni i \in I \iff (X, \mathcal{T}_{PROD}) connesso;
```

e osservare che il caso di $X = \prod_{n \in \mathbb{N}} [0,1]$ (risp. $X = \mathbb{R}^{\mathbb{N}}$) considerato sopra fornisce un controesempio all'implicazione

```
(X_i, \mathcal{T}_i) compatto (risp. connesso) per ogni i \in I \Longrightarrow (X, \mathcal{T}_{BOX}) compatto (risp. connesso).
```

xv. Dimostrare che due topologie su un insieme X che lo rendano compatto e Hausdorff se confrontabili devono coincidere (notare che se $\mathcal{T} \supseteq \mathcal{T}'$ allora $\mathrm{id} : (X, \mathcal{T}) \to (X, \mathcal{T}')$ è continua; si prenda $C \subset X$ chiuso per $\mathcal{T}...$). Usando il punto precedente si osservi che perciò nel caso in cui (X_i, \mathcal{T}_i) sia Hausdorff per ogni $i \in I$, X è compatto nella box topology se e solo se questa coincide con la topologia prodotto.