ESERCIZI GEOMETRIA 2 PARTE B SETTIMANA 10 –BASE MOBILE DI FRENET PER CURVE A VELOCITÀ UNITARIA

Esercizio 1. Sia $\gamma(t) = \left(\frac{1}{\sqrt{2}}\cos(t), \frac{1}{\sqrt{2}}\sin(t), \frac{t}{\sqrt{2}}\right)$ l'elica. Dimostrare che si tratta di una curva a velocità unitaria. Determinare:

- La base mobile di Frenet $\{t, n, b\}$.
- Il primo piano osculatore.
- Il piano normale osculatore.
- Il piano rettificante.
- La curvatura κ e la torsione τ .
- Il cerchio osculatore.

Esercizio 2. Ricordo che la *catenaria* è il grafico del coseno iperbolico, ovvero la funzione $\sigma: \mathbb{R} \to \mathbb{R}^2$ definita da $\sigma(t) = (t, \cosh(t))$.

- Tracciare un grafico di σ .
- Dimostrare che la riparametrizzazione a velocità unitaria di σ è $\tilde{\sigma}:\mathbb{R}\to\mathbb{R}^2$ definita da

$$\tilde{\sigma}(s) = \left(\log(s + \sqrt{1 + s^2}), \sqrt{1 + s^2}\right).$$

- Calcolare la base mobile di Frenet $\{\mathbf t, \mathbf n\}$ di $\tilde{\sigma}$.
- Calcolare la curvatura κ di $\tilde{\sigma}$.
- Determinare il cerchio osculatore di $\tilde{\sigma}$.