ESERCIZI GEOMETRIA 2 PARTE B SETTIMANA 9 – CURVE DIFFERENZIABILI

Esercizio 1. Sia $\alpha : \mathbb{R} \to \mathbb{R}^2$ il cerchio di centro $C = (c_1, c_2)$ e raggio r > 0, definito da $\alpha(t) = (c_1 + r\cos(t), c_2 + r\sin(t))$. Dimostrare che una riparametrizzazione di α a velocità unitaria è la curva $\beta : \mathbb{R} \to \mathbb{R}^2$ definita da $\beta(s) = (c_1 + r\cos(s/r), c_2 + r\sin(s/r))$.

Esercizio 2 (Elica). Siano a>0 e b>0 due numeri reali. Definisco la curva differenziabile $\gamma:\mathbb{R}\to\mathbb{R}^3$ tramite l'equazione $\gamma(t)=(a\cos(t),a\sin(t),bt)$. Disegnare γ . Dimostrare che una riparametrizzazione di γ a velocità unitaria è la curva differenziale $\beta:\mathbb{R}\to\mathbb{R}^3$ definita dall'equazione $\beta(s)=\left(a\cos\left(\frac{s}{\sqrt{a^2+b^2}}\right),a\sin\left(\frac{s}{\sqrt{a^2+b^2}}\right),\frac{bs}{\sqrt{a^2+b^2}}\right)$.