ESERCIZI GEOMETRIA 2 PARTE B SETTIMANA 9 – VARIETÀ DIFFERENZIABILE

Esercizio 1. Dimostrare che $\mathbb{S}^n = \{(x_1, \dots, x_{n+1}) \in \mathbb{R}^{n+1} | x_1^2 + \dots + x_{n+1}^2 = 1\}$ è una varietà differenziabile di dimensione n immersa in \mathbb{R}^{n+1} .

Esercizio 2 (Grassmanniane). Fissiamo due interi r ed N con $0 \le r \le N$. La Grassmanniana degli r-sottospazi di \mathbb{R}^N è l'insieme

$$G_{r,N} = \{V \subseteq \mathbb{R}^N \text{ sottospazio vettoriale di dimensione } \dim(V) = r\}.$$

Dimostrare che $G_{r,N}$ è una varietà differenziale di \mathbb{R}^{Nr} di dimensione r(N-r).

Traccia dello svolgimento. Se V è un sottospazio di dimensione r di \mathbb{R}^N , denoto con [V] l'elemento corrispondente in $G_{r,N}$. Fissato [V], sia v_1, \ldots, v_r una \mathbb{R} -base di V. Scrivo

$$v_i = (x_{i,1}, \dots, x_{i,N})$$

per $i = 1, \dots, r$ e definisco la matrice

$$A_{[V]} = \begin{pmatrix} x_{1,1} & \dots & x_{1,N} \\ \dots & \dots & \dots \\ x_{r,1} & \dots & x_{r,N} \end{pmatrix}.$$

Se $M \in \mathcal{M}_{r \times N}(\mathbb{R})$ e $M' \in \mathcal{M}_{r \times N}(\mathbb{R})$ sono due matrici con r righe ed N colonne, entrambe di rango massimo r, dico che M ed M' sono equivalenti se esiste $A \in GL_r(\mathbb{R})$ tale che $M' = A \cdot M$; definisco inoltre l'insieme delle classi di equivalenza modulo la relazione così definita:

 $\mathcal{M} = \{ \text{matrici } A \text{ con } r \text{ righe ed } N \text{ colonne di rango } r \} / \sim .$

Infine, fissati r indici distinti $1 \leq i_1 \leq i_r \leq N$, sia $I = \{i_1, \ldots, i_r\} \subseteq \{1, \ldots, N\}$ e per $M \in \mathcal{M}_{r \times N}(\mathbb{R})$, definisco M_I come la matrice formata dalle colonne i_1, \ldots, i_r di M.

- (1) Dimostrare che la funzione $[V] \mapsto A_{[V]}$ definisce una biezione (di insiemi) tra $G_{r,N}$ e \mathcal{M} .
- (2) Posto $U_I = \{ M \in \mathcal{M}_{r \times N}(\mathbb{R}) | \det(M_I) \neq 0 \}$, mostrare che

$$\bigcup_{I} U_{I} = \{ M \in \mathcal{M}_{r \times N}(\mathbb{R}) | \text{ rango di } M \text{ è massimo} \},$$

dove l'unione è su tutti i sottoinsiemi $I \subseteq \{1, ..., N\}$ formati da r elementi distinti.

(3) Mostrare che U_I è un aperto saturo rispetto alla proiezione

$$\bigcup_{I} U_{I} \longrightarrow G_{r,N}$$

ottenuta componendo l'uguaglianza nel punto (2), la proiezione canonica

$$\{M \in \mathcal{M}_{r \times N}(\mathbb{R}) | \text{ rango di } M \text{ è massimo}\} \longrightarrow \mathcal{M}$$

e l'inversa della mappa $[V] \mapsto A_{[V]}$.

(4) Mostrare che per ogni I, ogni $M \in U_I$ ha un rappresentante N tale che $N_I = \mathrm{Id}_{r \times r}$, dove $\mathrm{Id}_{r \times r}$ è la matrice identità $r \times r$. Concludere che i punti di $G_{r,N}$ che sono immagini di matrici di U_I corrispondono biettivamente a matrici $N \in U_I$ tali che $N_I = \mathrm{Id}_{r \times r}$. Dedurre da questo che le restanti N - r colonne del rappresentante N (dunque, i restanti r(N-r) elementi) possono essere usate per definire una parametrizzazione

$$\varphi_I: U_I \longrightarrow G_I \subseteq G_{r,N}.$$

(5) Concludere che $G_{r,N}$ è una varietà differenziale di \mathbb{R}^{Nr} di dimensione r(N-r).