ESERCIZI GEOMETRIA 2 PARTE B SETTIMANA 8 – CONNESSIONE PER ARCHI

Esercizio 1. Sia $A = \{(0, y) | y \in [-1, 1]\}$, $B = \{(x, \sin(1/x)) | s \in (0, 1]\}$, $X = A \cup B$. Mostrare che X è connesso ma non è connesso per archi.

Esercizio 2. Per ogni $n \ge 1$ intero, definire $C_n = \{(1/n, y) | y \in [0, 1]\}$, $J = \{(x, 0) | x \in [0, 1]\}$, $K = \{(0, 1)\}$, $X = J \cup K \cup (\cup_{n \ge 1} C_n)$. Mostrare che X è connesso ma non è connesso per archi.

Esercizio 3. Mostrare che $\mathbb{R}^2 \setminus \{(0,0)\}$ è connesso per archi e dedurre che $\mathbb{C}^\times = \mathbb{C} \setminus \{0\}$ è connesso per archi. Mostrare che $\mathbb{R}^n \setminus \{(0,\ldots,0)\}$ è connesso per archi per ogni $n \geq 2$.

Esercizio 4. Dimostrare che $\mathrm{SL}_n(\mathbb{C})$ è connesso per archi.

Esercizio 5. Dimostrare che $U_n(\mathbb{C})$ è connesso per archi.

Esercizio 6. Mostrare che $\mathrm{GL}_n(\mathbb{R})=\mathrm{GL}_n^+(\mathbb{R})\cup\mathrm{GL}_n^-(\mathbb{R})$ è unione delle due componenti connesse $\mathrm{GL}_n^+(\mathbb{R})=\{g\in\mathrm{GL}_n(\mathbb{R})|\det(g)>0\}$ e $\mathrm{GL}_n^-(\mathbb{R})=\{g\in\mathrm{GL}_n(\mathbb{R})|\det(g)<0\}$, entrambe connesse per archi.