ESERCIZI GEOMETRIA 2 PARTE B SETTIMANA 7 – CONNESSIONE

Esercizio 1. Provare che $\mathbb{R}^2 \setminus \{(0,0)\}$ è connesso.

Suggerimento. Definire i seguenti aperti di \mathbb{R}^n :

$$A_1 = \{(x_1, x_2) | x_1 > 0\},\$$

$$A_2 = \{(x_1, x_2) | x_2 > 0\},\$$

$$A_3 = \{(x_1, x_2) | x_1 < 0\},\$$

$$A_4 = \{(x_1, x_2) | x_2 < 0\}.$$

- (1) Mostrare che ciascuni degli A_i per i=1,2,3,4 è connesso (utilizzare che ciascun A_i è omeomorfo a \mathbb{R}^2).
- (2) Mostrare che $A_1 \cup A_2$ è connesso (osservare per questo che $A_1 \cap A_2 \neq \emptyset$).
- (3) Mostrare che $(A_1 \cup A_2) \cup A_3$ è connesso (osservare che $(A_1 \cup A_2) \cap A_3 \neq \emptyset$).
- (4) Mostrare che $(A_1 \cup A_2 \cup A_3) \cup A_4$ è connesso (osservare che $(A_1 \cup A_2 \cup A_3) \cap A_4 \neq \emptyset$). (5) Dopo aver notato che $\mathbb{R}^2 \{(0,0)\} = A_1 \cup A_2 \cup A_3 \cup A_4$, concludere che $\mathbb{R}^2 \{(0,0)\}$

Esercizio 2. Sia $n \geq 2$ intero. Provare che $\mathbb{R}^n \setminus \{(0,\ldots,0)\}$ è connesso, generalizzando l'argomento precedente.

Esercizio 3. Mostrare che $GL_n(\mathbb{R})$ non è connesso per ogni $n \geq 1$.

Esercizio 4. Mostrare che \mathbb{R} con la topologia cofinita è connesso.

Esercizio 5. Sia j_d la topologia su \mathbb{R} una cui base di aperti è [a,b) con a < b. Dimostrare che \mathbb{R} con questa topologia è sconnesso.

Esercizio 6. Sia $f: X \to Y$ una funzione continua e suriettiva tra due spazi topologici. Supponiamo che Y sia connesso, $f^{-1}(y)$ sia connesso per ogni $y \in Y$ e che f sia aperta. Dimostrare che X è connesso.